
Online OS Profiling with SnailTrail
Distributed Systems Lab Project

(can be extended to a Master Thesis)

Understanding the performance of multi-threaded
systems is hard. In case the target system is a complex
OS running thousands of applications, then the problem
becomes even more challenging.

Traditional profilers like gprof collect time statistics
for the running programs (essentially the time spent per
function call), which can then be aggregated to esti-
mate how much time was spent in each function dur-
ing the program execution. If the program is executed
sequentially, i.e. by a single thread, then this naı̈ve ap-
proach can also be used to estimate the contribution of
a function call to the overall latency of the execution. In
concurrent programs, however, causality matters: dif-
ferent parts of the program may be executed by differ-
ent threads whose activities may overlap in time, thus,
the simple summation of individual times is incorrect.

Critical Path Analysis (CPA) tackles this problem by
introducing the notion dependencies between activities
(e.g. function calls) in a program execution. Intuitively,
an activity X depends on another activity Y iff Y must
first finish before executing X. Activities can be repre-
sented as edges in a graph where the nodes denote
start and end events, each one associated with a times-
tamp. This abstract graph representation is known as
the Program Activity Graph (PAG). The critical path is
then defined as the longest path in the PAG, i.e. the se-
quence of dependent activities whose duration equals
the total duration of the program execution.

Existing CPA approaches are defined on the com-
plete PAG that corresponds to a finished program ex-
ecution. As a result, they cannot be applied in a sce-
nario where the instrumented system is continuously
running like in the case of an OS. In such a setting,

traditional CPA needs significant modifications and can
be performed only within time windows. To this end, we
have recently designed and implemented SnailTrail [3],
a novel system that introduces the notion of transient
critical paths for online CPA. Online CPA has already
been applied to popular streaming data processing sys-
tems with promising results.

The goal of this project is to take SnailTrail one step
further and perform online CPA of a modern operating
system. Our use case will be Barrelfish [4], a research
OS designed and implemented in the Systems Group
at ETH Zurich. Barrelfish is heavily instrumented and
is an ideal testbed not only for gaining insights into the
dependencies of low-level OS tasks, but also for bench-
marking the performance of SnailTrail itself.

As a DSL project, the core part of the work lies in
the integration of Barrelfish with SnailTrail—the latter
currently accepts a different log format. However, the
project can also be extended into a Master Thesis that
will investigate possible improvements of SnailTrail with
ideas from non-intrusive approaches, e.g. [1], and other
related works in the field, such as [2].

[1] Charlie Curtsinger and Emery D. Berger. “Coz: Finding Code
That Counts with Causal Profiling”. In: Proceedings of the 25th
Symposium on Operating Systems Principles. SOSP ’15. Mon-
terey, California: ACM, 2015, pp. 184–197.

[2] Nikolai Joukov et al. “Operating System Profiling via Latency
Analysis”. In: Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation - Volume 7.
OSDI ’06. Seattle, WA, 2006, pp. 7–7.

[3] Ralf Sager et al. “SnailTrail: Online Bottleneck Detection for your
Dataflow”. In: Proceedings of EuroSys. 2017.

[4] The Barrelfish Operating System. URL: http : / / www .

barrelfish.org/.

Interested?

Please contact John Liagouris (liagos@inf.ethz.ch) and Moritz Hoffmann (moritz.hoffmann@inf.ethz.ch).
The proposed project will be supervised by Dr. John Liagouris and Prof. Timothy Roscoe.

http://www.barrelfish.org/
http://www.barrelfish.org/
mailto:liagos@inf.ethz.ch
mailto:moritz.hoffmann@inf.ethz.ch

