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Operator state in streaming computations is very
valuable and should be guarded against failure: the lack
of fault-tolerance can result in incomplete or incorrect
results after recovery. Additionally, streaming jobs run
for long periods of time, accumulating state over several
days or even months: reprocessing all input in the case
of failures would be prohibitively expensive and time-
consuming. The common approaches to fault-tolerance
for streaming computations based on snapshots or ac-
tive replication can have a significant negative impact
on latency and overall performance. This Thesis will
explore techniques that afford reduced impact on per-
formance by moving the replication out of the critical
path, thanks to the properties of the chosen computa-
tional model, Differential Dataflow [4].
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Figure 1: Differential Dataflow operator and input/output
streams representing evolving collections.

Differential Dataflow is a data-parallel program-
ming framework designed to efficiently process large
volumes of data and to quickly respond to arbitrary
changes in input collections. Differential dataflow pro-
grams are written as functional transformations of col-
lections of data, using familiar operators like map,
filter, join, and group.1

Collections Differential Dataflow represents opera-
tor inputs and outputs as collections of items that evolve
with (logical) time (Fig. 1). Each collection in differen-
tial dataflow reflects an append-only log of immutable
updates indexed by the logical timestamp. Updates are

committed atomically every time computation for a cer-
tain (logical) time is completed (sequence numbers in
Fig. 1). For this reason, each collection has known con-
sistent states after each commit: these are natural roll-
back points in case of failure.

Thesis. This thesis aims to improve Differential
Dataflow ’s robustness against certain failure scenar-
ios. The approach should leverage the intrinsic prop-
erties of the model to achieve asynchronous replication
and fault-tolerance, with reduced overhead and recov-
ery cost. This work will also be a key enabler for use-
cases such as online re-scaling and time-travel.

Specifically, the goal is to (i) ensure timely dataflow
collections can be reliably and efficiently stored or repli-
cated, (ii) determine safe recovery points by inspect-
ing the computation’s progress and dataflow graph,
and (iii) prototype a recovery mechansim for Differen-
tial Dataflow.

Related work Relevant for this work are RDDs[5],
that share similarities with this approach, and Map Re-
duce[3] that’s foundational for modern distributed re-
silient computation. [2] surveys fault-tolerance and high
availability mechanisms in streaming systems, and Mill-
Wheel[1] is a data-streaming system that supports fault
tolerance with durable queues and checkpoints.
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