Online Reconstruction of Structural
Information from Datacenter Logs

EuroSys'17, Belgrade — 25.04.2017

Zaheer Chothia John Liagouris

Desislava Dimitrova Timothy Roscoe

===

Systems @ ETH ziricn

Understand dynamics of real datacenter workloads
Online, continuously and with modest resources

System to processes log streams at gigabits per second
Reconstruct sessions comprising millions of transactions
In real time while dealing with real-world phenomena
that make such a task challenging

DC component interactions are
complex and interwoven

« OS no longer has a global view of resources

« Within a node: thread pools, event loops, callbacks

» Across nodes: asynchrony, different vendors, deep stacks

« Timestamps alone do not give consistent ordering to events

Microservice architecture
(Netflix and Twitter)

http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf 3
https://twitter.com/adrianco/status/441883572618948608

http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
https://twitter.com/adrianco/status/441883572618948608

Motivation: resource accounting

Task: relate all executed work back to the originating request or tenant

Distributed profiling Billing
"Why is this request so slow?” "Who should be charged?”
. Reifistteone

cache write
insert block
write repl

10us +

10us 4

Tmin Distributed
filesystem
e EVICt
TOUS ——immmrdessnsnnnn,
: dISk Write : HDFS Map Shuffle Reduce Imachine
T0US s ennnnne HostA en_ " .
" block : Host B«
1 Host C - L. Ali%a
HostD e~ = Y . N ey
Py’ <}

ol | o | ke
e K

[Disk Read Throughput [0 Disk Write Throughput

s
Host E B N
HostF m 4 SV NN

:
EFITHT

[Google's Dapper, Pivot Tracing]

Compact summaries shed insight

Foundation for diagnostic, profiling, and monitoring tasks
essential to the operation of the datacenter

300ps

/"‘
) T c all 20()“ (cal) .
Multple # o) | * User sessions
e (bra) Cen) o) 5
workflow S Toous o p
Spans
Request one Request one Request two
Focus graph Flow graph ° C a | I g Fa p h S
Sjngle requeast, Multiple requests, Infeasible paths 1
single workflow different workflows T grgph ° Tra Nnsa Ct IoN t Fees
[a 2600ps | Infeasible path
" o itical h
L | Critical pat
_ B * Timing charts
Request one Requests one+two Requests one+two
Gantt chart Calling context tree

[Sambasivan, Raja R, et al. So, you want to trace your distributed system? Technical Report, CMU-PDL-14-102]

DC stack is already heavily instrumented

[: Trace points, End-to-end traces Component boundary
4)
sahnn s nn pashassnnnnn; n
Peesd (D00 00
J U U QU U v
‘ _ J
fﬁ 4 T
nn n
IRIRIR IR IS IRERE T R R IR R IR & TS
— . J
Middleware App server Distributed

filesystem

DC stack is already heavily instrumented

E Trace points, End-to-end traces Component boundary

g..g..g..g..ﬂ...\.........A (n N n] [%1{\]

Underlying principle: metadata propagation (as in Dapper)
Thread global context throughout to capture causally-related activity.

‘Uiiliii A= | P

Middleware App server Distributed
filesystem

DC stack is already heavily instrumented

N
U

Middleware App server Distributed
filesystem

The reconstruction problem

A —@--0

Application A A2 —
pplication "2 —A.

B.1

O
Application B 82 —@
B.3 — -

B.4

Time: 2015/09/01 10:03:38.599859
Session ID: XKSHSKCBAS53UO88FXGE7LDS8
Transaction ID: 26-3-11-5-1

Challenges of using real logs

: |

Out-of-order arrivals Al =0 :
A2 ———

Records arrive in non-deterministic order but within A3 e :

limited time frame (max. observed: 10 seconds) A4 |

Missing logs

33.7% have no session ID or transaction number
Incomplete or fragmented trees prevent dependency inference

Reordered |OgS — Records typically buffered and flushed in batches
Very Iong SEeSSIONS — Inherent skew, high memory requirements

Clock desynchronization

Misordering: message appears to be received before sent
Trigger inversion: parent transaction starts after child

System architecture and integration

U Trace points --» End-to-end traces Component boundary
Middleware Application servers Distributed
filesystem

[Log collection

1
I
\ 4 \ 4

Trace analysis Re-order Session re- Session
(dataflow) buffer construction statistics

Ul: Query interface, Live visualization

Logs spread across 1263
streams and 42 servers

Mean input rate:
1.3 million events/sec at
424.3 MB/sec

Discrete events — hierarchical trace tree

Terminology

Tree nodes are the basic
unit of work (spans)

Edges indicate casual
relationship between a
span and its child spans

Timestamped records
encode span's start and
end time and application-
specific annotations

@® Logevent

Client

A

e eee o
Ciedie

[] Transaction

n-2-8 Transaction ID

Time —»

¢

1

o : o

S

1-1

o

® : o

ST

Inactivity

Data-parallel execution

Ny,
((18 Timely Dataflow — g low-latency dataflow computational model

« Streaming arrivals: all workers
participate in computation and

receive input in parallel
session window

* Ingestion: buffer-and-reorder %

now flush on

Stash arriving records, wait inactivity

fixed interval (slack) and sort £ % f§ 8 fh

« Data exchange: re-partition by
session ID; does not imply any
logical barrier between shuffle
and computation phases

« Time granularity (epoch)
impacts execution efficiency
and progress traffic

Input Re-order Partitioni Session Online
stream buffer artiioning— \vindow analytics

Logical

hash S JA
dataflow

Physical deployment

L, [——, Worker 1
L,
L, Worker 2
Los Worker m
I—n—2
Notifications — |

Lnl LY =

RN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE [2 a —
L, Epoch completions

(punctuations) Distributed
Log servers progress tracking

Characteristics of a production workload

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0'? ms 1 sec 1 min lh O'? us 1 ms 1 sec
(a) Transaction Tree Duration (b) Maximum Inter-arrival Time

Figure 1. CDFs (Cumulative Distribution Functions) showing total dura-
tion of transaction trees and maximum interval between messages of a
single session. Note: the x-axis is in logarithmic scale.

Characteristics of a production workload

~95% of root transactions are short-lived Only 0.24% of root transactions are
with total time span of < 2 seconds dormant for more than a minute
0.8 R 0.8 E
0.6 R 0.6 R
0.4 . 0.4 i
0.2 e 0.2 s
T I TS - 1 {7 T P
(a) Transaction Tree Duration (b) Maximum Inter-arrival Time

Figure 1. CDFs (Cumulative Distribution Functions) showing total dura-
tion of transaction trees and maximum interval between messages of a
single session. Note: the x-axis is in logarithmic scale.

Real-time results with modest resource usage

Epoch processing latency [msec]

Low latency: Flink spent on average 2.1
seconds (+1.1 s) for processing a single
epoch of streaming logs whereas our

Peak resident set size remained stable and

reached a peak of 203 MB while Flink's
heap rose above 7.5 GB and required

system took only 26 milliseconds (£53 ms)

10°% g
10° F
104 .

103 F

102

101

100 L

Number of (hosts, workers)

(a) Apache Flink

considerable tuning

Epoch processing latency [msec]

Number of workers

(b) Our system

Efficiency permits deeper analytics

1100
1000
900
800
700
600

Elapsed time [msec]

500
400
300

T T
I S —
L o _
|
L o i
| +
L o |
|
] T Fo N
_L -t
| |
Tree Communication
clustering patterns

Exploiting a general framework
permits a simple, concise
implementation in 1770 lines of
code while seamlessly integrating
with management applications.

Composition of analytic tasks:

* Online trace tree clustering

» Service dependency extraction
» Inferring call-graph patterns

g1 1118418

Exploit comprehensive instrumentation already
prevalent in data center applications

Reconstruct user sessions, communication
dependencies and trace tree clusters online

Maintain and updates user sessions in real-time for an
entire data center on a single commodity machine

Processing latency in the range of tens of milliseconds

19

Online Reconstruction of Structural

Information from Datacenter Logs

Multiple
requests,
same
workflow

Request one uest one
Focus graph Flow graph

Single request, Multiple requests, .
single workflow different workflows Infeasible paths

in call graph
Infeasible path
/
[@"] soous
[J600us
Request one Requests one+two
Gantt chart Calling context tree

Problem: complex, interwoven interactions User sessions, call graphs, transaction trees,
timing charts shed insight

------------------------------------ C'o
""""" L e

.......... ; Timely
| Dataflow

—
[«
=)

e

—

(@]
o
1

session window

now flush on
inactivity

T 1T et

sing latency [msec]
=
S
'
1

2
]
!
!
!
!
!
!
!
!
!
i
|
+
A

Epoch pr
=
<L
1

AL
R T
Number of workers
Approach: formulate sessionization as a Data parallel execution, gigabits per second,

Dataflow Operator millions of transactions in real time

