
1

Online Reconstruction of Structural

Information from Datacenter Logs

EuroSys’17, Belgrade – 25.04.2017

Zaheer Chothia

Desislava Dimitrova

John Liagouris

Timothy Roscoe

2

Overall ambition:

• Understand dynamics of real datacenter workloads

• Online, continuously and with modest resources

Glimpse:

• System to processes log streams at gigabits per second

• Reconstruct sessions comprising millions of transactions

• In real time while dealing with real-world phenomena

that make such a task challenging

DC component interactions are

complex and interwoven

3

• OS no longer has a global view of resources

• Within a node: thread pools, event loops, callbacks

• Across nodes: asynchrony, different vendors, deep stacks

• Timestamps alone do not give consistent ordering to events

Microservice architecture

(Netflix and Twitter)

http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf

https://twitter.com/adrianco/status/441883572618948608

http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
http://gotocon.com/dl/goto-chicago-2014/slides/AdrianCockcroft_TuesdayMorningKeynoteSpeedAndScaleHowToGetThere.pdf
https://twitter.com/adrianco/status/441883572618948608

Motivation: resource accounting

Task: relate all executed work back to the originating request or tenant

4

Billing

“Who should be charged?”

Distributed profiling

“Why is this request so slow?”

[Google’s Dapper, Pivot Tracing]

Compact summaries shed insight

5

Foundation for diagnostic, profiling, and monitoring tasks

essential to the operation of the datacenter

• User sessions

• Spans

• Call graphs

• Transaction trees

• Critical path

• Timing charts

[Sambasivan, Raja R., et al. So, you want to trace your distributed system? Technical Report, CMU-PDL-14-102]

DC stack is already heavily instrumented

6

Trace points End-to-end traces Component boundary

Middleware Distributed

filesystem

App server

DC stack is already heavily instrumented

7

Trace points End-to-end traces Component boundary

Middleware Distributed

filesystem

App server

Underlying principle: metadata propagation (as in Dapper)

Thread global context throughout to capture causally-related activity.

DC stack is already heavily instrumented

8

Trace points End-to-end traces Component boundary

Middleware Distributed

filesystem

App server

The reconstruction problem

9

Application A

Application B

A.1

A.2

A.3

B.1

B.2

B.3

B.4

Time: 2015/09/01 10:03:38.599859

Session ID: XKSHSKCBA53U088FXGE7LD8

Transaction ID: 26-3-11-5-1

Challenges of using real logs

10

Missing logs
33.7% have no session ID or transaction number

Incomplete or fragmented trees prevent dependency inference

Out-of-order arrivals
Records arrive in non-deterministic order but within

limited time frame (max. observed: 10 seconds)

A.1

A.2

A.3

A.4

Reordered logs – Records typically buffered and flushed in batches

Very long sessions – Inherent skew, high memory requirements

Clock desynchronization

Misordering: message appears to be received before sent

Trigger inversion: parent transaction starts after child

System architecture and integration

11

Trace points End-to-end traces Component boundary

Log collection

Middleware
Distributed

filesystem
Application servers

UI: Query interface, Live visualization

Trace analysis

(dataflow)
Re-order

buffer

Session re-

construction

Session

statistics

Logs spread across 1263

streams and 42 servers

Mean input rate:

1.3 million events/sec at

424.3 MB/sec

Discrete events → hierarchical trace tree

12

Log event

A

B

1 2

1-1 1-2

1

1-3

1-1

Client Time

1

1-1 1-2

2

Inactivity

Transaction ID n-2-8 Transaction

Terminology

• Tree nodes are the basic

unit of work (spans)

• Edges indicate casual

relationship between a

span and its child spans

• Timestamped records

encode span's start and

end time and application-

specific annotations

Data-parallel execution

13

session window

flush on

inactivity

now

Timely Dataflow – a low-latency dataflow computational model 𝛿

• Streaming arrivals: all workers

participate in computation and

receive input in parallel

• Ingestion: buffer-and-reorder

Stash arriving records, wait

fixed interval (slack) and sort

• Data exchange: re-partition by

session ID; does not imply any

logical barrier between shuffle

and computation phases

• Time granularity (epoch)

impacts execution efficiency

and progress traffic

14

Input

stream

Re-order

buffer

Session

window

Online

analytics
Partitioning

Logical

dataflow
I S B hash A

Log servers

Distributed

progress tracking

Ln-1

Ln

Ln-2

L2

L1

L3

Ln-3

⋮

Worker 2

Worker 1

Worker m

I2 S2 A2

I1 S1 A1

Im Sm Am

⋮ ⋮ ⋮ ⋮

Notifications

Epoch completions

(punctuations)

Physical deployment

Characteristics of a production workload

15

Characteristics of a production workload

16

~95% of root transactions are short-lived

with total time span of ≤ 2 seconds

Only 0.24% of root transactions are

dormant for more than a minute

Real-time results with modest resource usage

17

(a) Apache Flink (b) Our system

Peak resident set size remained stable and

reached a peak of 203 MB while Flink’s

heap rose above 7.5 GB and required

considerable tuning

Low latency: Flink spent on average 2.1

seconds (±1.1 s) for processing a single

epoch of streaming logs whereas our

system took only 26 milliseconds (±53 ms)

Efficiency permits deeper analytics

18

Exploiting a general framework

permits a simple, concise

implementation in 1770 lines of

code while seamlessly integrating

with management applications.

Composition of analytic tasks:

• Online trace tree clustering

• Service dependency extraction

• Inferring call-graph patterns

Summing up

19

• Exploit comprehensive instrumentation already

prevalent in data center applications

• Reconstruct user sessions, communication

dependencies and trace tree clusters online

• Maintain and updates user sessions in real-time for an

entire data center on a single commodity machine

• Processing latency in the range of tens of milliseconds

Questions? zchothia@inf.ethz.ch

User sessions, call graphs, transaction trees,

timing charts shed insight

Problem: complex, interwoven interactions

session window

flush on

inactivity
now

Approach: formulate sessionization as a

Dataflow Operator

Data parallel execution, gigabits per second,

millions of transactions in real time

Timely

Dataflow

𝛿

Online Reconstruction of Structural

Information from Datacenter Logs

