
Google

UNDERSTANDING
DISTRIBUTED
DATAFLOW
SYSTEMS

OUTPUT EXPLANATION AND
PERFORMANCE ANALYSIS

John Liagouris
liagos@inf.ethz.ch

3 May 2017

mailto:liagos@inf.ethz.ch?subject=

PART I: Why is this record in the output of my
distributed dataflow?

PART II: Why is my distributed dataflow slow?

▸ Concise explanations of individual outputs

▸ On-demand output reproduction

▸ Bottleneck detection

▸ Critical path analysis

2

Desislava Dimitrova Vasiliki Kalavri

Zaheer ChothiaMoritz Hoffmann

Andrea Lattuada

Timothy Roscoe

Sebastian WickiFrank McSherry

COLLABORATORS

Ralf Sager

3

THE BIG PICTURE: UNDERSTANDING THE DATACENTER

‣ The volume of datacenter logs is huge

‣ Keeping archives is not a viable solution

‣ We can process logs online
4

event logs

Enterprise Datacenter
Strymon

THE BIG PICTURE: UNDERSTANDING THE DATACENTER

Strymon is a novel system able to:

‣ Perform deep analytics on thousands of distributed
streams of event logs in parallel

‣ Explain its outputs interactively 5

event logs

Enterprise Datacenter
Strymon

for dataflow systems

and different execution models

input stream output streamiterative analytics

worker 1

worker 2

synchronous vs asynchronous

shared-nothing vs shared-memory

streaming analytics

IDEAS IN STRYMON CAN BE GENERALIZED

6

TIMELY DATAFLOW

DIFFERENTIAL DATAFLOW

▸ A steaming framework for data-parallel computations

▸ Cyclic dataflows

▸ Logical timestamps (epochs)

▸ Asynchronous execution

▸ Low latency

D. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, M. Abadi.
Naiad: A Timely Dataflow System. In SOSP, 2013.

7

F. McSherry, D. Murray, R. Isaacs, M. Isard.
Differential Dataflow. In CIDR, 2013.

▸ A high-level API on top of Timely Dataflow

▸ Incremental computation

8

Why is this record in the output of my distributed dataflow?

PART I

9

1 2 3

COMPUTATION

PROVENANCE

EXPLANATIONS IN DATABASES

10

INPUT OUTPUT

THE PROBLEM: OUTPUT EXPLANATION

11

INPUT OUTPUT

THE PROBLEM: OUTPUT EXPLANATION
THIS RECORD

LOOKS WRONG!

{App 115 344}

{VM 233 -22}

{App 100 55}

{VM 333 -124}

… … …

{A 115 344}

{F 233 122}

{W 100 -95}

{V 30 23}

… … …

12

INPUT OUTPUT

THE PROBLEM: OUTPUT EXPLANATION
THIS RECORD

LOOKS WRONG!

{A 115 344}

{F 233 122}

{W 100 -95}

{V 30 23}

… … …

{App 115 344}

{VM 233 -22}

{App 100 55}

{VM 333 -124}

… … …

13

INPUT OUTPUT

THE PROBLEM: OUTPUT EXPLANATION
THIS RECORD

LOOKS WRONG!

{A 115 344}

{F 233 122}

{W 100 -95}

{V 30 23}

… … …

Output explanation: A subset of the input that is sufficient to
reproduce the selected subset of the output

{App 115 344}

{VM 233 -22}

{App 100 55}

{VM 333 -124}

… … …

14

ANNOTATION-BASED TECHNIQUES

▸ Fast

▸ Explode in size

1 2 3

metadata propagation

15

INVERSION-BASED TECHNIQUES

1’ 2’ 3’

▸ Small memory footprint

▸ Not generally applicable

16

1 2 3

dependencies

BACKWARD TRACING

▸ Small memory footprint

▸ Generally applicable

▸ Fast

PROBLEM 1: TOO MUCH INFORMATION

Use Case: Graph Rechability

17

1 5

2

34

18

1 5

2

34

Use Case: Graph Reachability

▸ Record (1,3) appears in the
result

WHY IS (1,3) IN
THE OUTPUT?

PROBLEM 1: TOO MUCH INFORMATION

▸ Record (1,3) appears in the
result

▸ Naive backward tracing
returns as an explanation all
edges of the graph

19

1 5

2

34

WHY IS (1,3) IN
THE OUTPUT?

Use Case: Graph Reachability

PROBLEM 1: TOO MUCH INFORMATION

▸ Record (1,3) appears in the
result

▸ Naive backward tracing
returns as an explanation all
edges of the graph

▸ A shortest path suffices

20

1 5

2

34

Use Case: Graph Reachability

WHY IS (1,3) IN
THE OUTPUT?

PROBLEM 1: TOO MUCH INFORMATION

PROBLEM 2: NOT ENOUGH INFORMATION

21

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

Use Case: Word Set Difference

Use Case: Word Set Difference

22

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

▸ Record (doc A, 3 unique words)
appears in the result

WHY ONLY 3 WORDS ARE
UNIQUE TO DOCUMENT A?

A

B

PROBLEM 2: NOT ENOUGH INFORMATION

(doc A, 3 unique words)

(doc B, 2 unique words)

23

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

▸ Record (doc A, 3 unique words)
appears in the result

▸ Naive backward tracing returns
as an explanation only the words
of doc A

A

B

Use Case: Word Set Difference

WHY ONLY 3 WORDS ARE
UNIQUE TO DOCUMENT A?

PROBLEM 2: NOT ENOUGH INFORMATION

(doc A, 3 unique words)

(doc B, 2 unique words)

24

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

▸ Record (doc A, 3 unique words)
appears in the result

▸ Naive backward tracing returns
as an explanation only the words
of doc A

▸ We also need the words of doc
B to reproduce the record
(doc A, 3 unique words)

A

B

Use Case: Word Set Difference

WHY ONLY 3 WORDS ARE
UNIQUE TO DOCUMENT A?

PROBLEM 2: NOT ENOUGH INFORMATION

(doc A, 3 unique words)

(doc B, 2 unique words)

CAN WE SOLVE BOTH PROBLEMS?

25

Yes! Given that the system is able to:

▸ Keep track of the exact point in the computation
a data record was produced

▸ Detect divergent records when replaying the
computation on a subset of the input

We exploit the main features of Differential Dataflow

EXPLANATIONS WITH DIFFERENTIAL DATAFLOW

26

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

EXPLANATIONS WITH DIFFERENTIAL DATAFLOW

27

Augment the original dataflow with a shadow dataflow

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

Explanation
dataflow: Join

Join

JoinINPUT OUTPUT

28

ITERATIVE BACKWARD TRACING

Join
Join

JoinExplanation
dataflow:

QUERYEXPL

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

29

ITERATIVE BACKWARD TRACING

Join
Join

JoinExplanation
dataflow:

QUERYEXPL

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

Trace Backwards

30

ITERATIVE BACKWARD TRACING

Join
Join

JoinExplanation
dataflow:

QUERYEXPL

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

Replay
Compare

31

ITERATIVE BACKWARD TRACING

Join
Join

JoinExplanation
dataflow:

QUERYEXPL

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

Trace divergent
records backwards

k1 v
k2 v’
… …

k1 v
k2 v’’
… …

32

ITERATIVE BACKWARD TRACING

Join
Join

JoinExplanation
dataflow:

QUERYEXPL

Original
dataflow: Op A

Op B

Op CINPUT OUTPUT

Replay again
(for the new records)

Compare

Repeat until a fix-point

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

3333

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

34

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

GROUP

(THE, [A,B])
 (BROWN, A)

(FOX, A)
(LAZY, B)
(DOG,B)

35

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

GROUP

(THE, [A,B])
 (BROWN, A)

(FOX, A)
(LAZY, B)
(DOG,B)

FILTER

(BROWN,A)
(FOX,A)
(LAZY,B)
(DOG,B)

36

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

GROUP

(THE, [A,B])
 (BROWN, A)

(FOX, A)
(LAZY, B)
(DOG,B)

FILTER

(BROWN,A)
(FOX,A)
(LAZY,B)
(DOG,B)

37

GROUP
(A, 3)
(B, 2)

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

GROUP

(THE, [A,B])
 (BROWN, A)

(FOX, A)
(LAZY, B)
(DOG,B)

FILTER

(BROWN,A)
(FOX,A)
(LAZY,B)
(DOG,B)

38

GROUP
(A, 3)
(B, 2)

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

GROUP

(THE, [A,B])
 (BROWN, A)

(FOX, A)
(LAZY, B)
(DOG,B)

FILTER

(BROWN,A)
(FOX,A)
(LAZY,B)
(DOG,B)

39

GROUP
(A, 3)
(B, 2)

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

(THE, A)

THE QUICK
BROWN FOX

…

THE LAZY DOG
…

A

B

MAP

MAP

(THE, A)
 (BROWN, A)

(FOX, A)

(THE, B)
 (LAZY, B)
(DOG, B)

GROUP

(THE, [A,B])
 (BROWN, A)

(FOX, A)
(LAZY, B)
(DOG,B)

FILTER

(BROWN,A)
(FOX,A)
(LAZY,B)
(DOG,B)

40

GROUP
(A, 3)
(B, 2)

(THE, A)

EXAMPLE: EXPLAINING OUTPUTS OF WORD SET DIFFERENCE

RESULTS: EXPLAINING CONNECTED COMPONENTS

41

▸ Dataset: A subset of the Twitter graph with 1B edges

▸ Algorithm: Label propagation

▸ Output: Records of the form (A,B) denoting that nodes A and B belong
to the same connected component

▸ System used: Differential Dataflow

▸ Machine used: Intel Xeon E5-4640 at 2.4GHz with 32 cores and 500G
RAM

More results:

Z. Chothia, J. Liagouris, F. McSherry, T. Roscoe Explaining Outputs
in Modern Data Analytics PVDLB 9(12):1137-1148, 2016.

EXPLAINING CONNECTED COMPONENTS

42

Connected Components - Explanations

33

LiveJournal Twitter

Explanation query times remain largely below 1 sec

43

Why is my distributed dataflow slow?

PART II

client

W1

W1

scheduler

DISTRIBUTED DATAFLOWS

44

Apache Flink

Naiad

client

W1

W1

scheduler
▸ many processes and

activities

▸ the cause is usually
not isolated but
spans multiple
processes

CHALLENGE: TROUBLESHOOTING IS HARD

45

PROFILING: THE PROGRAM ACTIVITY GRAPH (PAG)

▸ Models Happened-Before relationships

46

PROFILING: THE PROGRAM ACTIVITY GRAPH (PAG)

▸ Vertices: events with timestamps

47

PROFILING: THE PROGRAM ACTIVITY GRAPH (PAG)

▸ Edges: duration of activities

48

PROFILING: THE PROGRAM ACTIVITY GRAPH (PAG)

▸ Wait edges: time spent in waiting for a message

49

CRITICAL PATH ANALYSIS

The critical path is the path of non-waiting activities in
the execution history of the program with the longest
duration

50

CRITICAL PATH ANALYSIS

51

The program activity graph is a DAG so the critical
path computation is tractable

CRITICAL PATH ANALYSIS

52

The critical path is constructed by starting from the last event and
backtracking:

‣ Following the edges with the longest duration

‣ Avoiding waiting edges

How can we compute the critical path in
long-running, dynamic distributed
applications, with possibly unbounded input?

▸ There may be no “job end”

▸ The PAG is evolving while the job is running

▸ Stale profiling information is not useful

53

TRANSIENT CRITICAL PATHS (TCPS)

54

An adaptation of the standard critical path on trace snapshots
▸ tumbling, sliding or custom windows

ts te

w1

w2

w1

w2

a b c d e

f g h i

b’ c’ d’ e’

f’ g’ h’ i’

1

2
1

1

1 3

2 4

2

1

1

1

1

1

3

1

1

Input Trace

Snapshot in [ts,te]

ts te

w1

w2

w1

w2

a b c d e

f g h i

b’ c’ d’ e’

f’ g’ h’ i’

1

2
1

1

1 3

2 4

2

1

1

1

1

1

3

1

1

55

b’ c’ d’ e’

g’ h’

b’ c’ d’

g’ h’ i’

c’ d’ e’

g’ h’f’

c’ d’

g’ h’f’ i’

b’

g’ h’ i’g’ h’f’ i’

TRANSIENT CRITICAL PATHS (TCPS)

Snapshot in [ts,te]

Transient Critical Paths

Multiple transient critical paths per snapshot
▸ All TCPs are possible parts of the unknown global critical path

in the snapshot [ts,te] {

56

b’ c’ d’ e’

g’ h’

b’ c’ d’

g’ h’ i’

c’ d’ e’

g’ h’f’

c’ d’

g’ h’f’ i’

b’

g’ h’ i’g’ h’f’ i’

TRANSIENT PATH CENTRALITY (TPC)
The number of transient critical paths an edge belongs to

TPC(d’,i’) = 2

TPC(g’,h’) = 6

57

b’ c’ d’ e’

g’ h’

b’ c’ d’

g’ h’ i’

c’ d’ e’

g’ h’f’

c’ d’

g’ h’f’ i’

b’

g’ h’ i’g’ h’f’ i’

AVERAGE CRITICAL PARTICIPATION (CP)
An estimation of the activity’s participation in the critical path

CP(d’,i’) = 2*1/6*5 = 0.066

CP(g’,h’) = 6*1/6*5 = 0.2

1

1

1

1

1

1

1 1

P ⌘ {~p ✓ E | @ ~p0 : ||~p0|| > ||~p||}, where ~p denotes a path
in G[ts,te], and ||~p|| denotes the total weight of all edges in ~p,
i.e., ||~p|| = P8e 2 ~p e[w].

Any path ~p 2 P is a transient critical path of the activity
graph G in the time interval [ts,te].

Figure 2b shows all six transient critical paths for the
snapshot in Figure 2a. Since each could potentially participate
in the global critical paths, we need to identify the most
important activities for system performance. In other words,
we need a metric for ranking activities according to their
impact on computation performance. In o✏ine CPA such a
ranking is trivial since there is only one critical path for the
entire computation.

We observe that an activity that appears on many transient
paths is more likely to be on the global critical path. In
Figure 2b, edge (d0, i0) appears in two paths, while edge
(g0, h0) belongs to all six. We incorporate this information
in the performance metric we define next.

3.2 Critical Participation
Given the duration of an activity e[w] and the total length ||~p||
of the critical path ~p, the participation of e to ~p is defined as:

qe =
e[w]
||~p|| 2 [0, 1] (1)

and is easily computed for all activities in a single pass of ~p.
We correspondingly define the average critical participa-

tion (CP) of an activity e in a transient critical path as:

CPe =

Pi=N
i=1 qi

e

N
2 [0, 1] (2)

where qi
e is the participation of e to the i-th transient critical

path (given by Eq. 1), and N is the total number of transient
critical paths in the graph snapshot.

A straightforward way to compute CPe is to materialize
all N transient paths and compute the participation of each
activity in every path. However, path materialization is not
viable in an online setting. Instead, we exploit the fact that
the CP of an activity actually depends on the total number of
transient paths this activity belongs to. Hence, we define the
transient path centrality as follows:

Definition 8. Transient Path Centrality: LetP = {~p1, ~p2, ...~pN}
be the set of N transient paths of snapshot G[ts,te]. The tran-
sient path centrality of an edge e 2 G[ts,te] is defined as

c(e) =
NX

i=1

ci(e), where ci(e) =

8>><
>>:

0 : e < ~pi

1 : e 2 ~pi

The following holds:

CPa =
T PC(a) · aw

N(te � ts)
(3)

Eq. 31 indicates that the computation of CPe can be
reduced to the computation of c(e), which requires no path
materialization and can be performed in parallel for all edges
in G[ts,te]. We provide an algorithm for the transient path
centrality and CP without materialization in Section 5.1.

We can now compute the transient path centrality and
critical participation for the Figure 2 example. For instance,
c(d0, i0) = 2 and c(g0, h0) = 6. Respectively, since te � ts = 5
and N = 6, CP(d0,i0) = 0.066 and CP(g0,h0) = 0.2.

Figure 3: A program activity graph snapshot. Each edge is
annotated with its transient path centrality (Definition 8).

The example in Figure 3 illustrates how CP discards ac-
tivities that do not a↵ect performance and focuses on per-
formance bottlenecks and optimization opportunities. In this
case worker w2 waits after activity (f , g) and so neither ac-
tivities (b, f), (e, f), nor (f , g) can be on the critical path and
so improving their performance would not help computation
in [ts, te]. In fact, they are assigned with a zero transient path
centrality and, hence, a zero CP value.

The CP of Eq. 2 can be generalized for activities of a
specific type c as:

X

8e:e[p]=c

CPe (4)

and the following holds1:
X

8c 2 G

X

8e:e[p]=c

CPe = 1 (5)

4. Generality
Here we look at the generality of our approach, and its
applicability to a range of modern dataflow systems - in other
words, what abstract execution model do we assume, and
what constraints does it impose on the instrumented system?

Spark, Flink, TensorFlow, and Timely are superficially
di↵erent, but actually similar with regard to critical path anal-
ysis: all execute dataflow programs expressed as directed
graphs whose vertices are operators (e.g. map, reduce) and
whose edges denote data dependencies. Given a set of work-
ers (threads, processes) and resources, a logical dataflow
graph can be translated into a physical execution plan, where
all workers apply operators of the dataflow program to parti-
tions of the data in parallel.
1 We provide proofs of Eqs. 3 and 5 in an extended technical note.

4 2017/4/30

1

1

1

1

1

1 1
1 1

1 1

1
1

1

1

1

3 3

number of transient
critical paths

edge weight

TRANSIENT CRITICAL PATHS ARE WIDELY APPLICABLE

58

“RDDs” “DataStreams” “Spouts and Bolts”

▸ data transformation
▸ data exchange
▸ control messages
▸ I/O
▸ data (de)-serialization
▸ buffer management
▸ scheduling

} common set of
low-level primitives!

“Tensors” Naiad

RESULTS: COMPARISON WITH CONVENTIONAL PROFILING

59

▸ Benchmark: TPC-DS [1]

▸ System under study: Spark (1.2.1)

▸ Setting: 20 machines with 8 workers each

▸ We actually used Spark logs from [2]

▸ Snapshot interval: 10 sec

[2] Ousterhout, K. Spark performance analysis (accessed: April 2017)
https://kayousterhout.github.io/trace- analysis/

[1] TPC-DS. http://www.tpc.org/tpcds/

COMPARISON WITH CONVENTIONAL PROFILING

60

0 200 400
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 200 400
Snapshot

%
w

ei
gh

t

Shuffling
Processing

Serialization
Deserialization

ControlMessage
Unknown

COMPARISON WITH CONVENTIONAL PROFILING

61

0 200 400
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 200 400
Snapshot

%
w

ei
gh

t

Shuffling
Processing

Serialization
Deserialization

ControlMessage
Unknown

“Optimizing disk usage can improve performance by a median of at most 19%”
Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., and Chun, B.-G.
Making sense of performance in data analytics frameworks. In NSDI (2015).

ONGOING AND FUTURE WORK

62

reference application Strymon

Timelyevent logs

online critical
path analysis

real-time
performance
summaries

adaptive scheduling

dynamic scaling

straggler mitigation

feedback

dynamic job
management

INTERESTING QUESTIONS

63

▸ Can we use the Program Activity Graph to verify
instrumentation?

▸ What is the appropriate snapshot size for analyzing the
performance of a dataflow execution?

▸ Can we use sampling to reduce the number of snapshots
we examine without affecting the quality of the results?

SUMMARY

64

reference application Strymon

Timely

event logs

online critical
path analysis

real-time
performance
summaries

adaptive scheduling

dynamic scaling

straggler mitigation

feedback

real-time job
performance
management

PART I: Iterative Backward Tracing Part II: Transient Critical Path Analysis

concise explanations

output reproduction
guarantees

real-time performance summaries
transient critical paths

IN OUT

OUTIN

interactive times
continuous computations

3 May 2017Google

John Liagouris
liagos@inf.ethz.ch

UNDERSTANDING
DISTRIBUTED
DATAFLOW
SYSTEMS

OUTPUT EXPLANATION AND
PERFORMANCE ANALYSIS

mailto:liagos@inf.ethz.ch?subject=

RESULTS: PROVENANCE OVERHEAD IN DATALOG

66

Datalog Computations - Overhead

• SNOMED CT: computation time increases from 32% (32 threads) to 42% (1 thread)

• GALEN8: computation time increases from 29% (32 threads) to 44% (1 thread)

41

SNOMED CT GALEN8

RESULTS: EXPLANATIONS IN DATALOG

67

Datalog Computations - Lineage

42

SNOMED CT GALEN8

Explanation query times remain largely below 1 sec

RESULTS: UPDATING PROVENANCE IN DATALOG

68

Update batch size: 10 tuples
Provenance update times remain largely below 1 sec

Datalog Computations - Updates

43

SNOMED CT GALEN8

RESULTS: PROVENANCE OVERHEAD IN CONNECTED COMPONENTS

69

(a) LiveJournal (b) Twitter
Figure 12: Explanations for label propagation using the generic
reduce explanation logic. The top figure plots the observed la-
tencies for 1,000 output explanations using one core; the bottom
figure plots the query latencies against the explanation sizes.

propagation algorithm, using the generic reduce explanation logic
of Section 3.1. The queries on the x-axis of the two plots on top
are given in ascending order of their latencies from left to right.
The observed latencies are manageable for LiveJournal, but still too
large for Twitter, even though the input of the reduce operator is
filtered on the logical time as we explained in Section 3.2.2.

The topk optimization of Section 3.2.3 resolves this problem by
retaining only the path which followed backwards has the least node
identifiers. The result is a simple shortest path from label to node.
The derivation of this path is roughly equivalent to repeated pointer
chasing: looking up a key in the topk explanations, projecting out
the current node id as the explanation request passes through the
join, and repeating with the new node id as a key. All explana-
tions are paths with size bounded by the diameter of the graph. In
practice, we see explanation sizes from three to five edges, and this
is consistent with our understanding of large social networks as
having a small diameter. Figure 13 presents query latencies for the
explanations of 1,000 randomly chosen outputs of the connected
components computation, using the topk optimization. Again, the
explanation queries on the x-axis are given in ascending order of
their latencies from left to right. We see that the latencies are consis-
tently small, with the exception of a few queries that upon inspection
are among the first issued, suggesting some warm-up issues.

(a) LiveJournal (b) Twitter
Figure 13: Observed query latencies for 1,000 output explana-
tions for the label propagation algorithm. Response times are
largely within 10 milliseconds, other than a small number of ini-
tial samples. The single-core latencies are consistently smallest,
because there is almost no parallel work to perform.

Explanation Overhead. Figure 14 shows the execution times with
and without provenance tracking for connected components on the

LiveJournal and Twitter graphs for our approach (DD) with 1 to 32
threads. The relative overheads for LiveJournal range from 169%
(1 thread) to 188% (32 threads). The relative overheads for Twitter
range from 88% (1 thread) to 84% (32 threads). These overheads
are large because the reference connected components computation
is well optimized: its data-parallel operators use dense integer keys
and avoid hash maps, whereas in provenance-tracking mode we
spend the bulk of the time populating hash maps with input records.
The overheads of provenance tracking in Figure 10 are much smaller
because the reference Datalog computation uses the same hash join.

Comparison with other systems. Figure 14 also depicts the perfor-
mance of the state-of-the-art systems for graph analytics, Myria [31]
and SociaLite [30], on the label propagation algorithm. Note that
SociaLite does not accept the number of workers as a parameter.
In addition, we were unable to get SociaLite to report more than
1.7M labels for the Twitter graph, thus, we do not report its elapsed
time for this dataset. As a general comment, these systems do not
support provenance tracking or incremental computations. Still, our
system (DD-x) is 50x faster than Socialite on LiveJournal, and 4x
faster than Myria on both datasets using x=32 workers.

Incremental Updates. Figure 15 presents the observed latencies
to perform 1,000 updates of size 10 to the LiveJournal and Twitter
graphs for the label propagation algorithm. The updates on the
x-axis are given in ascending order of their latencies from left to
right. For these experiments, we introduced all but U=5,000 edges,
chosen randomly; in each batch of updates we added 5 random
edges from U and removed 5 random edges from the existing ones.
The largest update time we observed is 2.9s, for 32 threads with
batch size 100 on Twitter (see [9]). Although 1% of the updates
increase by more than 20x, the update times remain interactive,
typically tens of milliseconds. Excluding the highly-variant 32-
thread measurements, the time for all updates increases by at most
8.6x. These large relative numbers are due to the optimized nature
of the reference computation; the update latencies are within 10
milliseconds for each batch. The extended version of this paper
[9] provides the latencies for updates of various sizes, the update
latencies without provenance, and the point-wise latency ratios with
and without provenance.

(a) LiveJournal (b) Twitter
Figure 14: Execution times for label propagation with and with-
out provenance, for several systems and configurations.

4.3 Explanations for Stable Matching
We now evaluate our generalized backward tracing of Section

3.3, which provides explanations su�cient to reproduce the output
in arbitrary non-monotonic computations. We use a representative
non-monotonic computation, stable matching in graphs, that applies
to a bipartite graph and a list of candidate matchings (edges), which
are rank-ordered by each of the incident nodes. The goal is to
find a matching (a subset of the edges where each node is incident

1145

RESULTS: UPDATING EXPLANATIONS IN CONNECTED COMPONENTS

70

(a) LiveJournal (b) Twitter
Figure 15: Observed latencies to perform 1,000 updates of size
10 to the input graphs of the label propagation algorithm.

on at most one edge) with the property that no excluded edge is
more appealing to both of its endpoints than the matchings they
actually received. Existing approaches do not guarantee su�cient
explanations here, as the stable matching computation does not fall
into the two classes we described in the introduction.

We model the input to the computation as a collection of quadru-
ples: (a, b, pa, pb) where a and b are node identifiers, and pa and pb
are their respective rank orderings (0 being best) for this particular
matching. The standard algorithm for this task has each node a
“propose” to its most prefered b, at which point the b either “rejects”
or “tentatively accepts” the proposal, determined by whether it has
received a better proposal. Each declined proposal is crossed o↵
the list, and the process continues. We can write this algorithm
as a fixed-point computation in di↵erential dataflow, where we re-
peatedly determine the best proposal for each a in parallel, from
those determine the best proposal for each b in parallel, and cross of
proposals in the former but not the latter. Iterated to a fixed-point,
this emulates the above algorithm, as our system only communicates
updates when proposals change. The pseudo-code is given below.

initial.iterate(|active| {
// key records by a, order by pa.
let props =
active.map(|x| (x.a,(x.pa,x.b,x.pb)))

.topk(1, |x| x);
// key records by b, order by pb.
let accpt =
props.map(|x| (x.b,(x.pb,x.a,x.pa)))

.topk(1, |x| x);
// discard unaccepted proposals.
active.except(props.except(accpt))

});

(a) LiveJournal (b) Twitter*
Figure 16: Observed query latencies for 1,000 output explana-
tions for the stable matching algorithm.

Remark. For the experiments we used tuples of the form (a, b, pa, pb),
where a, b are ids of adjacent nodes in the graphs of Table 2, and pa,
pb are randomly generated unsigned integers. We run the computa-
tion on the LiveJournal graph, but we observed that explanations can
be enormous for the Twitter graph, since its maximum degrees are

substantially larger than preference lists we might expect. To report
measurements, we restricted the Twitter graph to those nodes with
degree at most 1,000. We denote this dataset as Twitter*. This re-
duces the number of edges by a factor of three but, more importantly,
reduces the maximum explanation size to something manageable.

Explanation Queries. Figure 16 presents the observed latencies for
1,000 explanation queries for stable matching on the LiveJournal and
Twitter* graphs. The explanation queries on the x-axis are given in
ascending order of their latencies from left to right. The latencies are
largely interactive, and only a small fraction of explanation queries
takes more than a second. We also see that additional threads bring
little benefit. This is because iterated backward tracing introduces
considerable sequential work.

Figure 17 plots explanation latencies against both result size and
rounds of backward tracing required, demonstrating that the latency
is explained by the complexity of the explanation we must derive.
We are not aware of prior work on explaining the results of stable
matching, and have less clear intuition for whether the explanations
should be small than we have in the case of connected components.
It may be that there are simpler explanations, and it is an open
question whether we could hope to find them automatically. We
leave this for future work.

(a) LiveJournal (b) Twitter*
Figure 17: Stable matching explanation query latencies on one
core plotted against result sizes (top) and the required number
of rounds in backward tracing (bottom). Some outputs require
as many as one hundred rounds of backward tracing to explain.

Explanation Overhead. Stable matching is not commonly im-
plemented by graph processing systems, in part because its non-
monotonic nature makes it more challenging to express. Figure 18
presents the elapsed times to compute the stable matching, with and
without our explanation tracking, for varying numbers of cores. The
derivations are non-trivial; for example, on the LiveJournal graph,
our system takes more than 2,000 iterations to reach a fixed-point.
The relative overheads for LiveJournal range from 358% (1 thread)
to 316% (32 threads). The relative overheads for Twitter* range
from 348% (1 thread) to 328% (32 threads). The overheads are
non-trivial, largely due to the two except operations.

Incremental Updates. Figure 19 presents the observed update
times for the stable matching problem with batch size 10. The
updates on the x-axis are given in ascending order of their latencies
from left to right. For these experiments, we introduced all but
U=5,000 matchings, chosen randomly; in each batch of updates
we added 5 random matchings from U and removed 5 random
matchings from the existing ones. The largest update latency we
observed is 52 seconds, for two threads on Twitter*. For 99% of the

1146

RESULTS: EXPLAINING STABLE MATCHING IN GRAPHS

71

▸ Dataset: A subset of the Twitter graph with 300M edges

▸ Algorithm: Stable Matching

▸ Output: Records of the form (A,B) denoting that nodes A and B
matched

▸ System used: Differential Dataflow

▸ Machine used: Intel Xeon E5-4640 at 2.4GHz with 32 cores and 500G
RAM

EXPLAINING STABLE MATCHING IN GRAPHS

72

(a) LiveJournal (b) Twitter
Figure 15: Observed latencies to perform 1,000 updates of size
10 to the input graphs of the label propagation algorithm.

on at most one edge) with the property that no excluded edge is
more appealing to both of its endpoints than the matchings they
actually received. Existing approaches do not guarantee su�cient
explanations here, as the stable matching computation does not fall
into the two classes we described in the introduction.

We model the input to the computation as a collection of quadru-
ples: (a, b, pa, pb) where a and b are node identifiers, and pa and pb
are their respective rank orderings (0 being best) for this particular
matching. The standard algorithm for this task has each node a
“propose” to its most prefered b, at which point the b either “rejects”
or “tentatively accepts” the proposal, determined by whether it has
received a better proposal. Each declined proposal is crossed o↵
the list, and the process continues. We can write this algorithm
as a fixed-point computation in di↵erential dataflow, where we re-
peatedly determine the best proposal for each a in parallel, from
those determine the best proposal for each b in parallel, and cross of
proposals in the former but not the latter. Iterated to a fixed-point,
this emulates the above algorithm, as our system only communicates
updates when proposals change. The pseudo-code is given below.

initial.iterate(|active| {
// key records by a, order by pa.
let props =
active.map(|x| (x.a,(x.pa,x.b,x.pb)))

.topk(1, |x| x);
// key records by b, order by pb.
let accpt =
props.map(|x| (x.b,(x.pb,x.a,x.pa)))

.topk(1, |x| x);
// discard unaccepted proposals.
active.except(props.except(accpt))

});

(a) LiveJournal (b) Twitter*
Figure 16: Observed query latencies for 1,000 output explana-
tions for the stable matching algorithm.

Remark. For the experiments we used tuples of the form (a, b, pa, pb),
where a, b are ids of adjacent nodes in the graphs of Table 2, and pa,
pb are randomly generated unsigned integers. We run the computa-
tion on the LiveJournal graph, but we observed that explanations can
be enormous for the Twitter graph, since its maximum degrees are

substantially larger than preference lists we might expect. To report
measurements, we restricted the Twitter graph to those nodes with
degree at most 1,000. We denote this dataset as Twitter*. This re-
duces the number of edges by a factor of three but, more importantly,
reduces the maximum explanation size to something manageable.

Explanation Queries. Figure 16 presents the observed latencies for
1,000 explanation queries for stable matching on the LiveJournal and
Twitter* graphs. The explanation queries on the x-axis are given in
ascending order of their latencies from left to right. The latencies are
largely interactive, and only a small fraction of explanation queries
takes more than a second. We also see that additional threads bring
little benefit. This is because iterated backward tracing introduces
considerable sequential work.

Figure 17 plots explanation latencies against both result size and
rounds of backward tracing required, demonstrating that the latency
is explained by the complexity of the explanation we must derive.
We are not aware of prior work on explaining the results of stable
matching, and have less clear intuition for whether the explanations
should be small than we have in the case of connected components.
It may be that there are simpler explanations, and it is an open
question whether we could hope to find them automatically. We
leave this for future work.

(a) LiveJournal (b) Twitter*
Figure 17: Stable matching explanation query latencies on one
core plotted against result sizes (top) and the required number
of rounds in backward tracing (bottom). Some outputs require
as many as one hundred rounds of backward tracing to explain.

Explanation Overhead. Stable matching is not commonly im-
plemented by graph processing systems, in part because its non-
monotonic nature makes it more challenging to express. Figure 18
presents the elapsed times to compute the stable matching, with and
without our explanation tracking, for varying numbers of cores. The
derivations are non-trivial; for example, on the LiveJournal graph,
our system takes more than 2,000 iterations to reach a fixed-point.
The relative overheads for LiveJournal range from 358% (1 thread)
to 316% (32 threads). The relative overheads for Twitter* range
from 348% (1 thread) to 328% (32 threads). The overheads are
non-trivial, largely due to the two except operations.

Incremental Updates. Figure 19 presents the observed update
times for the stable matching problem with batch size 10. The
updates on the x-axis are given in ascending order of their latencies
from left to right. For these experiments, we introduced all but
U=5,000 matchings, chosen randomly; in each batch of updates
we added 5 random matchings from U and removed 5 random
matchings from the existing ones. The largest update latency we
observed is 52 seconds, for two threads on Twitter*. For 99% of the

1146

RESULTS: PROVENANCE OVERHEAD IN STABLE MATCHING

73(a) LiveJournal (b) Twitter*
Figure 18: Execution times for stable matching with and with-
out provenance tracking.

updates, the latencies increase by at most 2.85x, and the absolute
latencies remain largely interactive. The time to process all updates
increases by at most 1.8x on LiveJournal, and by at most 4.5x on
Twitter*. The extended version [9] provides the latencies for updates
of various sizes, the update latencies without provenance, and the
point-wise latency ratios with and without provenance.

(a) LiveJournal (b) Twitter*
Figure 19: Observed latencies to perform 1,000 updates of size
10 to the input graphs of the stable matching algorithm.

5. RELATED WORK
Provenance has a long history in databases and scientific work-

flows, and there are several comprehensive surveys in both fields
[7, 12]. Here we provide an overview of the related works on prove-
nance in (i) NoSQL systems, and (ii) Datalog engines. Table 3
summarizes the features of the most prominent systems.

Provenance for MapReduce. The first work on providing prove-
nance support in MapReduce jobs is RAMP [19]. This work de-
scribes a methodology on building wrappers around Map and Reduce
functions in order to track lineage dependencies between input and
output records. The authors implement their ideas on Hadoop and
provide experiments with word count and sorting jobs, showing
that provenance tracking has an acceptable overhead in both space
and time. Following the ideas of RAMP, [1] extends Hadoop op-
erators with native provenance support that results in even smaller
runtime overheads. Recently, Newt [24] has been introduced as a
general framework for tracking lineage in big data platforms. Newt
requires the manual instrumentation of the system for which lin-
eage has to be captured, and provides a separate MySQL cluster
where users can query the collected lineage data with SQL. A major
drawback of RAMP and Newt is that they do not provide access
to the intermediate data of the computation (in contrast to [1] that
o↵ers this functionality); consequently, these two systems cannot
provide the How provenance of an output record. Based on this
limitation, Titian [20] made some nice progress in extending Spark
with step-by-step provenance tracking. Titian materializes the de-

pendencies between individual records in a Spark job (including the
intermediate ones), and o↵ers an API for interactive forward and
backward tracing of dependencies. Similarly to RAMP and Newt,
the authors provide experiments with word count and grep jobs. An-
other interesting work is [3], which extends Pig Latin operators with
built-in provenance tracking. This approach tracks the complete
state of Pig Latin operators, i.e., both data and execution parameters,
and represents provenance dependencies as a graph G, similar to
the one shown in Fig. 2. The evaluation of provenance queries
requires the construction of the whole How provenance graph G in
advance; then, provenance queries are expressed as graph-matching
queries on G. A nice feature of [3] is that it allows users to query
provenance information at multiple levels of granularity through a
form of zoom-in/out operations on G. Finally, [28] provides limited
lineage support in Pig by propagating user-defined tags from the
input to the output records in an eager fashion. The limitations of all
previous works are summarized in the following: (i) they are unable
to handle iteration, (ii) they do not support real-time provenance for
computations over continuously updated data, and (iii) they do not
provide explanations that guarantee the reproduction of the output
in the presence of non-monotonic operators.

Provenance for Datalog. Database-style provenance has also re-
ceived considerable attention in the context of fixed-point Datalog
computations. The recursive nature of Datalog goes beyond rela-
tional algebra, making the application of traditional provenance
techniques even more challenging. After the seminal work in [18],
[13] was the first to identify that annotation-based approaches ex-
plode in size when applied to recursive computations. To provide
more concise provenance information, [14] proposed an algorithm
for retrieving sub-graphs of the How provenance graph based on
user-defined patterns. [22] presents an early e↵ort to add How prove-
nance support in general-purpose operational Datalog engines. This
work augments Datalog rules with additional predicates that are
used to track the dependencies between inputs and outputs.

Network Provenance. Data provenance is a versatile concept and
has also been used for network management, most notably in ExS-
PAN [33] and DTaP [34]. Both these systems are based on NDlog, a
variation of Datalog with aggregation (e.g., MIN), which was first in-
troduced in [25] for the declarative definition and analysis of routing
protocols. These works extend NDlog with support for How prove-
nance, in a way similar to [22], and they also provide incremental
tracking of provenance through semi-naive evaluation – which is
equivalent to di↵erential dataflow for Datalog. Driven by debugging
needs, DTap adopts a time-aware provenance model where each
node in the provenance graph is associated with a logical timestamp
that denotes the point a tuple was generated during the execution.
Logical timestamps can then be used to query provenance within
time windows (snapshots) specified by the user. The notion of time
in DTaP is similar to the one natively used in di↵erential dataflow
(cf. Section 2.2), however, time metadata are not exploited to pro-
vide concise explanations as we do in Section 4.2. In the connected
components example, DTaP explains a label r at node n by returing
all paths between nodes n and r in the graph. As a final comment,
NDlog is not well-suited for data analytics, e.g., it is unclear how it
can express stable matching (Section 4.3). In addition, the NDlog
engine is built as an extension of ns-3 (Network Simulator) and
cannot be used as a standalone distributed engine.

6. CONCLUSIONS
In this paper we presented a framework for explaining outputs in

modern data analytics, with a particular focus on iterative dataflows.
We introduced a generalized form of backward tracing which guar-

1147

RESULTS: UPDATING EXPLANATIONS IN STABLE MATCHING

74

(a) LiveJournal (b) Twitter*
Figure 18: Execution times for stable matching with and with-
out provenance tracking.

updates, the latencies increase by at most 2.85x, and the absolute
latencies remain largely interactive. The time to process all updates
increases by at most 1.8x on LiveJournal, and by at most 4.5x on
Twitter*. The extended version [9] provides the latencies for updates
of various sizes, the update latencies without provenance, and the
point-wise latency ratios with and without provenance.

(a) LiveJournal (b) Twitter*
Figure 19: Observed latencies to perform 1,000 updates of size
10 to the input graphs of the stable matching algorithm.

5. RELATED WORK
Provenance has a long history in databases and scientific work-

flows, and there are several comprehensive surveys in both fields
[7, 12]. Here we provide an overview of the related works on prove-
nance in (i) NoSQL systems, and (ii) Datalog engines. Table 3
summarizes the features of the most prominent systems.

Provenance for MapReduce. The first work on providing prove-
nance support in MapReduce jobs is RAMP [19]. This work de-
scribes a methodology on building wrappers around Map and Reduce
functions in order to track lineage dependencies between input and
output records. The authors implement their ideas on Hadoop and
provide experiments with word count and sorting jobs, showing
that provenance tracking has an acceptable overhead in both space
and time. Following the ideas of RAMP, [1] extends Hadoop op-
erators with native provenance support that results in even smaller
runtime overheads. Recently, Newt [24] has been introduced as a
general framework for tracking lineage in big data platforms. Newt
requires the manual instrumentation of the system for which lin-
eage has to be captured, and provides a separate MySQL cluster
where users can query the collected lineage data with SQL. A major
drawback of RAMP and Newt is that they do not provide access
to the intermediate data of the computation (in contrast to [1] that
o↵ers this functionality); consequently, these two systems cannot
provide the How provenance of an output record. Based on this
limitation, Titian [20] made some nice progress in extending Spark
with step-by-step provenance tracking. Titian materializes the de-

pendencies between individual records in a Spark job (including the
intermediate ones), and o↵ers an API for interactive forward and
backward tracing of dependencies. Similarly to RAMP and Newt,
the authors provide experiments with word count and grep jobs. An-
other interesting work is [3], which extends Pig Latin operators with
built-in provenance tracking. This approach tracks the complete
state of Pig Latin operators, i.e., both data and execution parameters,
and represents provenance dependencies as a graph G, similar to
the one shown in Fig. 2. The evaluation of provenance queries
requires the construction of the whole How provenance graph G in
advance; then, provenance queries are expressed as graph-matching
queries on G. A nice feature of [3] is that it allows users to query
provenance information at multiple levels of granularity through a
form of zoom-in/out operations on G. Finally, [28] provides limited
lineage support in Pig by propagating user-defined tags from the
input to the output records in an eager fashion. The limitations of all
previous works are summarized in the following: (i) they are unable
to handle iteration, (ii) they do not support real-time provenance for
computations over continuously updated data, and (iii) they do not
provide explanations that guarantee the reproduction of the output
in the presence of non-monotonic operators.

Provenance for Datalog. Database-style provenance has also re-
ceived considerable attention in the context of fixed-point Datalog
computations. The recursive nature of Datalog goes beyond rela-
tional algebra, making the application of traditional provenance
techniques even more challenging. After the seminal work in [18],
[13] was the first to identify that annotation-based approaches ex-
plode in size when applied to recursive computations. To provide
more concise provenance information, [14] proposed an algorithm
for retrieving sub-graphs of the How provenance graph based on
user-defined patterns. [22] presents an early e↵ort to add How prove-
nance support in general-purpose operational Datalog engines. This
work augments Datalog rules with additional predicates that are
used to track the dependencies between inputs and outputs.

Network Provenance. Data provenance is a versatile concept and
has also been used for network management, most notably in ExS-
PAN [33] and DTaP [34]. Both these systems are based on NDlog, a
variation of Datalog with aggregation (e.g., MIN), which was first in-
troduced in [25] for the declarative definition and analysis of routing
protocols. These works extend NDlog with support for How prove-
nance, in a way similar to [22], and they also provide incremental
tracking of provenance through semi-naive evaluation – which is
equivalent to di↵erential dataflow for Datalog. Driven by debugging
needs, DTap adopts a time-aware provenance model where each
node in the provenance graph is associated with a logical timestamp
that denotes the point a tuple was generated during the execution.
Logical timestamps can then be used to query provenance within
time windows (snapshots) specified by the user. The notion of time
in DTaP is similar to the one natively used in di↵erential dataflow
(cf. Section 2.2), however, time metadata are not exploited to pro-
vide concise explanations as we do in Section 4.2. In the connected
components example, DTaP explains a label r at node n by returing
all paths between nodes n and r in the graph. As a final comment,
NDlog is not well-suited for data analytics, e.g., it is unclear how it
can express stable matching (Section 4.3). In addition, the NDlog
engine is built as an extension of ns-3 (Network Simulator) and
cannot be used as a standalone distributed engine.

6. CONCLUSIONS
In this paper we presented a framework for explaining outputs in

modern data analytics, with a particular focus on iterative dataflows.
We introduced a generalized form of backward tracing which guar-

1147

RESULTS: COMPARISON WITH SINGLE-PATH APPROACH

75

▸ Benchmark: Yahoo Streaming Benchmark (YSB) [1]

▸ System under study: Flink (1.2.0)

▸ Setting: 1 machine with 8 workers

▸ Snapshot interval: 1 sec

[1] Yahoo Streaming Benchmark.
https://github.com/yahoo/streaming-benchmarks

https://github.com/yahoo/streaming-benchmarks

COMPARISON WITH SINGLE-PATH APPROACH

76

0 100 200 300
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0
C

P

0 100 200 300
Snapshot

Si
ng

le
pa

th
C

P
Input
Buffer
Scheduling
Processing

BarrierProcessing
Serialization
Deserialization

ControlMessage
DataMessage
Unknown

RESULTS: PROFILING DIFFERENT PHASES OF A ML JOB

77

▸ Benchmark: AlexNet program [1] on ImageNet [2]

▸ System under study: TensorFlow (1.0.1)

▸ Setting: 1 machine 16 workers (CPU threads)

▸ Snapshot interval: 1 sec

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25, F.
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105.

[1]

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.

[2]

Activities:
Unknown
ControlMessage
DataMessage

Operator Categories:
Math Primitives
State and Initialization
Transformations
Machine Learning

Figure 10: CP-based summaries for 3 phases of the AlexNet image processing application on TensorFlow with parallelism 1
(top) and 16 (bottom). The phases from left to right correspond to initialization, training, and accuracy respectively.

Figure 11: Communication imbalance summary for PageR-
ank on Timely (2 processes, 8 workers). On the left, total
number of transient critical paths traversing the communi-
cation activities for each pair of workers; on the right total
number of messages exchanged between each pair of workers
(communication within a worker omitted to maximize the
dynamic range of the plot).

found in [33], which also introduces Stitch, a tool for profiling
multi-level software stacks using traces. Like SysX, Stitch
requires no domain knowledge of the reference system, but
its Flow Reconstruction Principle assumes logged events are
su�cient to reconstruct the execution flow. SysX in contrast
does not assume this, and indeed yields insights for the better
instrumentation of dataflow systems. Finally, we note that
capturing dependencies between activities in dataflows is
similar to causal profiling in Coz [14]. Coz does not focus on
distributed dataflows, but does work non-intrusively without
instrumentation, and may be applicable to SysX.

Figure 12: Computation imbalance summary for the data
processing activity of YSB on Flink.

8. Conclusion
Online critical path analysis represents a new level of sophis-
tication for performance analysis of distributed systems, and
SysX shows its applicability to a range of di↵erent engines
and applications. While there is plenty of scope to improve
scaling (both with better algorithms and implementation),
realtime performance is still useful on a single machine.

Looking forward, SysX’s online operation suggests uses
beyond providing real-time information to system adminis-
trators: SysX’s performance summaries could serve as imme-
diate feedback for applications to perform automatic recon-
figuration, dynamic scaling, or adaptive scheduling.

All code in SysX will be released as open source.

12 2017/4/22

PROFILING DIFFERENT PHASES OF A MACHINE LEARNING JOB

78

initialization training accuracy

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 50 100 0 20 40
Snapshot

Figure 10: CP-based summaries for 3 phases of the AlexNet image processing application on TensorFlow with parallelism 1
(top) and 16 (bottom). The phases from left to right correspond to initialization, training, and accuracy respectively.

Figure 11: Communication imbalance summary for PageR-
ank on Timely (2 processes, 8 workers). On the left, total
number of transient critical paths traversing the communi-
cation activities for each pair of workers; on the right total
number of messages exchanged between each pair of workers
(communication within a worker omitted to maximize the
dynamic range of the plot).

found in [33], which also introduces Stitch, a tool for profiling
multi-level software stacks using traces. Like SysX, Stitch
requires no domain knowledge of the reference system, but
its Flow Reconstruction Principle assumes logged events are
su�cient to reconstruct the execution flow. SysX in contrast
does not assume this, and indeed yields insights for the better
instrumentation of dataflow systems. Finally, we note that
capturing dependencies between activities in dataflows is
similar to causal profiling in Coz [14]. Coz does not focus on
distributed dataflows, but does work non-intrusively without
instrumentation, and may be applicable to SysX.

Figure 12: Computation imbalance summary for the data
processing activity of YSB on Flink.

8. Conclusion
Online critical path analysis represents a new level of sophis-
tication for performance analysis of distributed systems, and
SysX shows its applicability to a range of di↵erent engines
and applications. While there is plenty of scope to improve
scaling (both with better algorithms and implementation),
realtime performance is still useful on a single machine.

Looking forward, SysX’s online operation suggests uses
beyond providing real-time information to system adminis-
trators: SysX’s performance summaries could serve as imme-
diate feedback for applications to perform automatic recon-
figuration, dynamic scaling, or adaptive scheduling.

All code in SysX will be released as open source.

12 2017/4/22

STABILITY ACROSS DIFFERENT SNAPSHOT INTERVALS

79

0 200 400
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 200 400
Snapshot

%
w

ei
gh

t

Shuffling
Processing

Serialization
Deserialization

ControlMessage
Unknown

0 20 40
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 20 40
Snapshot

%
w

ei
gh

t

Shuffling
Processing

Serialization
Deserialization

ControlMessage
Unknown

COMMUNICATION SKEW IN TIMELY DATAFLOW

80

Figure 10: CP-based summaries for 3 phases of the AlexNet image processing application on TensorFlow with parallelism 1
(top) and 16 (bottom). The phases from left to right correspond to initialization, training, and accuracy respectively.

Figure 11: Communication imbalance summary for PageR-
ank on Timely (2 processes, 8 workers). On the left, total
number of transient critical paths traversing the communi-
cation activities for each pair of workers; on the right total
number of messages exchanged between each pair of workers
(communication within a worker omitted to maximize the
dynamic range of the plot).

found in [33], which also introduces Stitch, a tool for profiling
multi-level software stacks using traces. Like SysX, Stitch
requires no domain knowledge of the reference system, but
its Flow Reconstruction Principle assumes logged events are
su�cient to reconstruct the execution flow. SysX in contrast
does not assume this, and indeed yields insights for the better
instrumentation of dataflow systems. Finally, we note that
capturing dependencies between activities in dataflows is
similar to causal profiling in Coz [14]. Coz does not focus on
distributed dataflows, but does work non-intrusively without
instrumentation, and may be applicable to SysX.

Figure 12: Computation imbalance summary for the data
processing activity of YSB on Flink.

8. Conclusion
Online critical path analysis represents a new level of sophis-
tication for performance analysis of distributed systems, and
SysX shows its applicability to a range of di↵erent engines
and applications. While there is plenty of scope to improve
scaling (both with better algorithms and implementation),
realtime performance is still useful on a single machine.

Looking forward, SysX’s online operation suggests uses
beyond providing real-time information to system adminis-
trators: SysX’s performance summaries could serve as imme-
diate feedback for applications to perform automatic recon-
figuration, dynamic scaling, or adaptive scheduling.

All code in SysX will be released as open source.

12 2017/4/22

COMPUTATION SKEW IN FLINK

81

Figure 10: CP-based summaries for 3 phases of the AlexNet image processing application on TensorFlow with parallelism 1
(top) and 16 (bottom). The phases from left to right correspond to initialization, training, and accuracy respectively.

Figure 11: Communication imbalance summary for PageR-
ank on Timely (2 processes, 8 workers). On the left, total
number of transient critical paths traversing the communi-
cation activities for each pair of workers; on the right total
number of messages exchanged between each pair of workers
(communication within a worker omitted to maximize the
dynamic range of the plot).

found in [33], which also introduces Stitch, a tool for profiling
multi-level software stacks using traces. Like SysX, Stitch
requires no domain knowledge of the reference system, but
its Flow Reconstruction Principle assumes logged events are
su�cient to reconstruct the execution flow. SysX in contrast
does not assume this, and indeed yields insights for the better
instrumentation of dataflow systems. Finally, we note that
capturing dependencies between activities in dataflows is
similar to causal profiling in Coz [14]. Coz does not focus on
distributed dataflows, but does work non-intrusively without
instrumentation, and may be applicable to SysX.

0 50 100
Snapshot

0.0

0.1

0.2

0.3

C
P

0 50 100
Snapshot

%
w

ei
gh

t

Figure 12: Computation imbalance summary for the data
processing activity of YSB on Flink.

8. Conclusion
Online critical path analysis represents a new level of sophis-
tication for performance analysis of distributed systems, and
SysX shows its applicability to a range of di↵erent engines
and applications. While there is plenty of scope to improve
scaling (both with better algorithms and implementation),
realtime performance is still useful on a single machine.

Looking forward, SysX’s online operation suggests uses
beyond providing real-time information to system adminis-
trators: SysX’s performance summaries could serve as imme-
diate feedback for applications to perform automatic recon-
figuration, dynamic scaling, or adaptive scheduling.

All code in SysX will be released as open source.

12 2017/4/22

