UNDERSTANDING DISTRIBUTED DATAFLOW SYSTEMS

John Liagouris liagos@inf.ethz.ch

OUTPUT EXPLANATION AND PERFORMANCE ANALYSIS

3 May 2017

Google

PART I: Why is this record in the output of my distributed dataflow?

- Concise explanations of individual outputs
- On-demand output reproduction

PART II: Why is my distributed dataflow slow?

- Bottleneck detection
- Critical path analysis

COLLABORATORS

Desislava Dimitrova

Vasiliki Kalavri

Ralf Sager

Andrea Lattuada

Frank McSherry

Moritz Hoffmann

Zaheer Chothia

Sebastian Wicki

Timothy Roscoe

THE BIG PICTURE: UNDERSTANDING THE DATACENTER

Enterprise Datacenter

Strymon

- The volume of datacenter logs is huge
- Keeping archives is not a viable solution
- We can process logs online

THE BIG PICTURE: UNDERSTANDING THE DATACENTER

Enterprise Datacenter

Strymon

Strymon is a novel system able to:

- Perform deep analytics on thousands of distributed streams of event logs in parallel
- Explain its outputs interactively

IDEAS IN STRYMON CAN BE GENERALIZED

for dataflow systems

and different execution models

synchronous vs asynchronous

shared-nothing vs shared-memory

TIMELY DATAFLOW

D. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, M. Abadi. Naiad: A Timely Dataflow System. In SOSP, 2013.

- A steaming framework for data-parallel computations
 - Cyclic dataflows
 - Logical timestamps (epochs)
 - Asynchronous execution
 - Low latency

DIFFERENTIAL DATAFLOW

F. McSherry, D. Murray, R. Isaacs, M. Isard. *Differential Dataflow*. In CIDR, 2013.

- A high-level API on top of Timely Dataflow
 - Incremental computation

PART I

Why is this record in the output of my distributed dataflow?

EXPLANATIONS IN DATABASES

Output explanation: A subset of the input that is sufficient to reproduce the selected subset of the output

ANNOTATION-BASED TECHNIQUES

- Fast
- Explode in size

INVERSION-BASED TECHNIQUES

- Small memory footprint
- Not generally applicable

BACKWARD TRACING

- Small memory footprint
- Generally applicable
- Fast

Use Case: Graph Rechability

Use Case: Graph Reachability

Use Case: Graph Reachability

Record (1,3) appears in the result

2 5 4 3

 Naive backward tracing returns as an explanation all edges of the graph

Use Case: Graph Reachability

Record (1,3) appears in the result

- Naive backward tracing returns as an explanation all edges of the graph
- A shortest path suffices

- Record (doc A, 3 unique words) appears in the result
- Naive backward tracing returns as an explanation only the words of doc A

- Record (doc A, 3 unique words) appears in the result
- Naive backward tracing returns as an explanation only the words of doc A
- We also need the words of doc
 B to reproduce the record
 (doc A, 3 unique words)

CAN WE SOLVE BOTH PROBLEMS?

Yes! Given that the system is able to:

- Keep track of the exact point in the computation a data record was produced
- Detect divergent records when replaying the computation on a subset of the input

We exploit the main features of **Differential Dataflow**

EXPLANATIONS WITH DIFFERENTIAL DATAFLOW

EXPLANATIONS WITH DIFFERENTIAL DATAFLOW

Augment the original dataflow with a shadow dataflow

Repeat until a fix-point

40

RESULTS: EXPLAINING CONNECTED COMPONENTS

- Dataset: A subset of the Twitter graph with 1B edges
- Algorithm: Label propagation
- Output: Records of the form (A,B) denoting that nodes A and B belong to the same connected component
- System used: Differential Dataflow
- Machine used: Intel Xeon E5-4640 at 2.4GHz with 32 cores and 500G RAM

More results:

Z. Chothia, J. Liagouris, F. McSherry, T. Roscoe *Explaining Outputs in Modern Data Analytics* PVDLB 9(12):1137-1148, 2016. 41

EXPLAINING CONNECTED COMPONENTS

PART II

Why is my distributed dataflow slow?

DISTRIBUTED DATAFLOWS

CHALLENGE: TROUBLESHOOTING IS HARD

- many processes and activities
- the cause is usually not isolated but spans multiple processes

Models Happened-Before relationships

Vertices: events with timestamps

Edges: duration of activities

Wait edges: time spent in waiting for a message

CRITICAL PATH ANALYSIS

The critical path is the path of non-waiting activities in the execution history of the program with the longest duration

CRITICAL PATH ANALYSIS

The program activity graph is a DAG so the critical path computation is tractable

CRITICAL PATH ANALYSIS

The critical path is constructed by starting from the last event and backtracking:

- Following the edges with the longest duration
- Avoiding waiting edges

How can we compute the critical path in long-running, dynamic distributed applications, with possibly unbounded input?

- There may be no "job end"
- The PAG is evolving while the job is running
- Stale profiling information is not useful

TRANSIENT CRITICAL PATHS (TCPs)

An adaptation of the standard critical path on trace *snapshots*

tumbling, sliding or custom windows

TRANSIENT CRITICAL PATHS (TCPs)

Multiple transient critical paths per snapshot

• All TCPs are **possible parts** of the unknown global critical path

TRANSIENT PATH CENTRALITY (TPC)

The number of transient critical paths an edge belongs to

AVERAGE CRITICAL PARTICIPATION (CP)

An estimation of the activity's participation in the critical path

57

TRANSIENT CRITICAL PATHS ARE WIDELY APPLICABLE

"RDDs"

"DataStreams"

- data transformation
- data exchange
- control messages
- I/O
- data (de)-serialization
- buffer management
- scheduling

common set of low-level primitives!

RESULTS: COMPARISON WITH CONVENTIONAL PROFILING

- Benchmark: TPC-DS [1]
- System under study: Spark (1.2.1)
- Setting: 20 machines with 8 workers each
- We actually used Spark logs from [2]
- Snapshot interval: 10 sec

[1] TPC-DS. http://www.tpc.org/tpcds/

[2] Ousterhout, K. Spark performance analysis (accessed: April 2017) https://kayousterhout.github.io/trace- analysis/

COMPARISON WITH CONVENTIONAL PROFILING

COMPARISON WITH CONVENTIONAL PROFILING

"Optimizing disk usage can improve performance by a median of at most 19%"

Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., and Chun, B.-G. Making sense of performance in data analytics frameworks. In NSDI (2015).

ONGOING AND FUTURE WORK

INTERESTING QUESTIONS

What is the appropriate snapshot size for analyzing the performance of a dataflow execution?

Can we use sampling to reduce the number of snapshots we examine without affecting the quality of the results?

Can we use the Program Activity Graph to verify instrumentation?

SUMMARY

PART I: Iterative Backward Tracing

concise explanations

- output reproduction guarantees
 - interactive times

Part II: Transient Critical Path Analysis

transient critical paths real-time performance summaries continuous computations

UNDERSTANDING DISTRIBUTED DATAFLOW SYSTEMS

John Liagouris liagos@inf.ethz.ch

OUTPUT EXPLANATION AND PERFORMANCE ANALYSIS

Google

3 May 2017

RESULTS: PROVENANCE OVERHEAD IN DATALOG

RESULTS: EXPLANATIONS IN DATALOG

RESULTS: UPDATING PROVENANCE IN DATALOG

RESULTS: PROVENANCE OVERHEAD IN CONNECTED COMPONENTS

RESULTS: UPDATING EXPLANATIONS IN CONNECTED COMPONENTS

RESULTS: EXPLAINING STABLE MATCHING IN GRAPHS

- Dataset: A subset of the Twitter graph with 300M edges
- Algorithm: Stable Matching
- Output: Records of the form (A,B) denoting that nodes A and B matched
- System used: Differential Dataflow
- Machine used: Intel Xeon E5-4640 at 2.4GHz with 32 cores and 500G RAM

EXPLAINING STABLE MATCHING IN GRAPHS

RESULTS: PROVENANCE OVERHEAD IN STABLE MATCHING

RESULTS: UPDATING EXPLANATIONS IN STABLE MATCHING

RESULTS: COMPARISON WITH SINGLE-PATH APPROACH

- Benchmark: Yahoo Streaming Benchmark (YSB) [1]
- System under study: Flink (1.2.0)
- Setting: 1 machine with 8 workers
- Snapshot interval: 1 sec

[1] Yahoo Streaming Benchmark.

https://github.com/yahoo/streaming-benchmarks

COMPARISON WITH SINGLE-PATH APPROACH

RESULTS: PROFILING DIFFERENT PHASES OF A ML JOB

- Benchmark: AlexNet program [1] on ImageNet [2]
- System under study: TensorFlow (1.0.1)
- Setting: 1 machine 16 workers (CPU threads)
- Snapshot interval: 1 sec
- [1] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097-1105.
- [2] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. *ImageNet Large Scale Visual Recognition Challenge*. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211-252.

PROFILING DIFFERENT PHASES OF A MACHINE LEARNING JOB

initialization

training

accuracy

STABILITY ACROSS DIFFERENT SNAPSHOT INTERVALS

COMMUNICATION SKEW IN TIMELY DATAFLOW

COMPUTATION SKEW IN FLINK

