
Master’s Thesis Nr. 154

Systems Group, Department of Computer Science, ETH Zurich

Real-Time Performance Analysis of a Modern Data-Parallel Stream Processing Engine

by

Ralf Sager

Supervised by

Prof. Dr. Timothy Roscoe
Dr. John Liagouris

Dr. Desislava Dimitrova

March 2016–September 2016

Abstract

Identifying performance bottlenecks of modern, distributed stream pro-
cessing engines is a serious challenge. At the same time, such engines
are widely used to perform data-parallel tasks such as machine learn-
ing, graph processing or sophisticated streaming data analysis. Often-
times, these tasks are required to produce low-latency results as well
as to achieve a high throughput. As computations often consist of
complex, iterative dataflows and are distributed over multiple physical
machines — with hundreds of worker threads in total — finding the
source of a performance problem is a difficult task. While profiling can
be used to quantify the time spent in the various steps of a parallel
computation, it does not take into account the dependencies between
the steps. As a result, optimization efforts are often wasted on com-
ponents that have little to no influence on query latency or the overall
runtime of a program.

In this work, we offer a more effective alternative by applying criti-
cal path analysis, a dependency-aware technique. The critical path is
defined as the longest sequence of dependent steps in a parallel pro-
gram’s execution. Any increase in the execution time of a step on the
critical path will therefore result in an equal increase in the total run-
time of the computation. We refine existing critical path-based models
and apply them to data-parallel systems, which often share common
low-level principles. We provide guidelines on the instrumentation
necessary to apply our model, as well as a set of trace properties that
help verify the correctness of that instrumentation. Furthermore, we
develop a novel method to identify phases in a worker thread’s execu-
tion during which it is waiting — e.g. for a message from a different
worker — even in the absence of blocking system calls. Through critical
path analysis, we can then identify performance bottlenecks in system
components, dataflow operators as well as in network communication.

To demonstrate our ideas, we implemented a prototype system capable
of performing a critical path analysis of the Timely Dataflow stream
processing engine. We show that our system can effectively identify
the factors limiting a data-parallel computation’s overall performance.
Furthermore, we demonstrate that our analysis is both efficient and
scalable, and can even be performed in real-time in certain configura-
tions.

Contents

1 Introduction 1

2 Background 3
2.1 Computational Model of Timely Dataflow / Naiad 3
2.2 The Timely Dataflow System 5

2.2.1 Scopes/Subgraphs . 7
2.3 Related Work . 8

3 Formal Performance Model 13
3.1 Basic Performance Model . 13
3.2 Types of Activities . 17

3.2.1 Communication Activities 17
3.2.2 Worker Activities . 18

3.3 Implications for Instrumentation 20
3.4 Critical Path Algorithm . 22

4 Critical Path Computation: Preliminaries 27
4.1 Timely Dataflow’s Runtime Behavior 27

4.1.1 Operator Scheduling . 27
4.1.2 Progress Tracking . 29
4.1.3 Communication between Workers 31

4.2 Instrumentation . 34
4.2.1 Logging Facility . 34
4.2.2 Recorded Trace Events 34

4.3 Trace Preprocessing . 36
4.3.1 Correcting Clock Skew 36
4.3.2 Constructing Program Activities 37

5 Critical Path Computation: Essentials 41
5.1 Identifying Waiting Phases . 41

iii

Contents

5.1.1 Assumptions about Operators 43
5.1.2 Causal Relationships between Events/Activities 45
5.1.3 Wait-State Analysis Algorithm 49

5.2 Activity Graph . 52
5.2.1 Trace Slicing . 52

5.3 Critical Path Computation . 54
5.3.1 Preference for Worker Activities 57

6 Implementation 59
6.1 Stages of the Critical Path Analysis 61
6.2 Visualization . 63

7 Evaluation 67
7.1 Overhead of Instrumentation 67

7.1.1 Results and Discussion 68
7.2 Performance of the Critical Path Analysis 70
7.3 Analyzing the Scalability of BFS 75

7.3.1 Results and Discussion 75
7.3.2 Finding Activities to Optimize 77

8 Future Work 79
8.1 Applying the Formal Model to Other Systems 79
8.2 Extending the Performance Analysis 80
8.3 Applying a Sampling Method 80
8.4 Instrumentation Improvements 81

8.4.1 Recording OS Scheduling Information 81
8.4.2 Reducing the Number of Schedule Events 81
8.4.3 Removing Sequence Numbers from Messages 82
8.4.4 Dynamic Instrumentation 82

8.5 Logging Facility Improvements 83
8.5.1 Integrating Clock Alignment 84

8.6 Improving the Accuracy of the Wait-State Analysis 84
8.6.1 Replacing Timely’s Static Scheduler 84
8.6.2 Programming Model Modifications 84
8.6.3 More Precise Modeling of Progress Tracking 85

8.7 Improving the Visualization . 85

9 Conclusion 87

Bibliography 89

iv

Chapter 1

Introduction

Modern distributed stream processing engines such as Storm [37, 2], Flink [1,
21] or Timely Dataflow/Naiad [32, 6] hide much of the complexity of a dis-
tributed system’s implementation from the application developers. They en-
able the rapid development of highly scalable stream processing systems for
data-parallel workloads that offer both low latency as well as high through-
put. Alongside batch-oriented frameworks like Spark [40], they are often
used to perform large-scale data analytics.

As much as these frameworks facilitate the development of complex data-
parallel systems, identifying the causes of performance issues and selecting
optimization candidates are still difficult tasks, just as they are for other
large-scale distributed systems. One well-studied, intuitive method of mod-
eling the performance of parallel- and/or distributed systems is critical path
analysis [39].

In this work, we applied critical path analysis to modern data-parallel sys-
tems. They key contributions of this work are:

• We introduce a unified mathematical model for analyzing the perfor-
mance of data-parallel systems which is applicable to systems with
different computational models. Our model is based on existing trace-
based critical path models.

We describe a small set of program activities which are typically per-
formed by most modern data-parallel systems and can be traced with
a low amount of instrumentation and little performance overhead.
Furthermore, we describe a way of performing critical path analysis
for partial traces (slices), which permits the analysis of continuously
running computations or of only specific parts of a computation (e.g.
query executions).

1

1. Introduction

The formal model is general enough that it can be applied to many
data-parallel systems, including batch processors such as Spark. We
demonstrate the use of our model by applying it to Timely Dataflow
[32, 6].

• We define a set of properties which the instrumentation must satisfy
so that our critical path model is well-defined. These properties can be
checked efficiently based on the collected execution traces.

• We introduce a method to identify phases during a program’s execu-
tion in which it is waiting for messages or input data. Our method is
applicable when the program does not use blocking system calls, but is
busy-waiting (i.e. spinning) instead. The waiting phases, which need
to be known in order to perform a critical path analysis, are identified
solely based on the collected execution trace. Our method is targeted
at the Timely Dataflow system [32, 6], but the general principles could
also be applied to similar systems.

• We implemented a prototype system capable of performing critical
path analysis of Timely Dataflow [32, 6] computations. The prototype
takes the raw instrumentation logs as input and is capable of perform-
ing all necessary steps in real-time in certain configurations. As the
most important stages of the performance analysis are parallelized,
our prototype scales reasonably well.

In Chapter 2, we provide a brief introduction to Timely Dataflow’s compu-
tational model as well the system itself. Also, we review the related work
in this chapter. Chapter 3 introduces the generalized, formal performance
model we use to perform critical path analysis. In Chapter 4 and Chapter 5,
we describe how we applied the formal model to Timely Dataflow com-
putations. Chapter 4 includes a detailed description of Timely Dataflow’s
runtime behavior, the instrumentation used, and of the preprocessing of the
raw execution traces as preparation for the critical path analysis. Chapter 5
describes the identification of waiting phases, as well as the critical path com-
putation itself. Chapter 6 contains a brief description of the implementation
of our prototype performance analysis system and of our trace/critical path
visualization tool. We evaluate both the usefulness of our prototype in find-
ing performance issues as well as the performance of the prototype itself in
Chapter 7. Chapter 8 describes a list of remaining issues and suggestions for
future work. Finally, we draw our conclusions about this work in Chapter 9.

2

Chapter 2

Background

In this chapter, we will discuss the fundamentals of the Timely Dataflow/-
Naiad system, to which we want to apply critical path analysis (Sections 2.1
and 2.2). Furthermore, we will go over the related work regarding critical
path analysis in Section 2.3.

2.1 Computational Model of Timely Dataflow / Naiad

Naiad [32] is a high-performance distributed system for processing data-
parallel workloads. Similar to stream processing engines like Storm [2, 37]
and Flink [1, 21], it offers a form of transparent data-parallelism. While an
application has to specify how the input data is partitioned among workers,
the system hides most of the remaining complexity of a distributed system,
e.g. the exchange of data messages, buffering, progress tracking and so on.

ToStream BFS Concat

Feedback

ToStream

Figure 2.1: Dataflow graph of a simple breadth-first search (BFS)
computation. This example computation is included in Timely
Dataflow’s distribution [6].

In Naiad’s underlying computational model, called Timely Dataflow, compu-
tations are defined as a directed dataflow graph. Each vertex in the dataflow

3

2. Background

graph denotes an operator, and each edge denotes a communication channel.
Operators receive messages from other operators along their incoming edges
and can send messages along their outgoing edges. Furthermore, operators
are also allowed to keep a local state. In Naiad, dataflow graphs are allowed
to contain arbitrarily nested cycles, which makes the implementation of com-
plex iterative algorithms straightforward. An example of a simple dataflow
graph is shown in Fig. 2.1.

In order to provide data-parallelism, Naiad transforms the logical dataflow
graph into a physical dataflow graph, which is distributed to multiple worker
threads at runtime. Workers each have a copy of the whole graph. Addition-
ally, for each edge (channel) in the logical dataflow graph, corresponding
edges are created leading to the target operator on each worker in the sys-
tem1. This expansion is shown in Fig. 2.2. A partitioning function associated
with the channel defines the edge along which a particular message is sent.

A B

(a) Logical dataflow graph.

Worker 1

Worker 2

A1 B1

A2 B2

(b) Physical dataflow graph.

Figure 2.2: Expansion of the logical dataflow graph into a physi-
cal dataflow graph distributed to two workers.

Naiad also includes a fully distributed progress tracking protocol, which
measures the global progress of the whole computation. To do so, each data
message is assigned a logical timestamp. An operator which receives a mes-
sage with timestamp t is then granted the capability to send messages for
any timestamp t′ ≥ t. The progress tracking protocol keeps track of out-
standing messages and capabilities for each operator and therefore knows
which timestamps could still be received by a particular operator. An oper-
ator can make use of Timely Dataflow’s progress tracking by requesting a
notification for a certain timestamp t. As soon as it is guaranteed that the
operator will not receive any more messages for timestamp t, a notification
will be delivered to the operator by the progress tracking logic. The notifica-
tion also carries with it a capability for timestamp t, allowing the operator

1An exception to this are Pipeline channels, which only connect operators on the same
worker and cannot be used to exchange data with operators on other workers.

4

2.2. The Timely Dataflow System

to send any final messages for the particular epoch. For more details about
how progress tracking works in Timely Dataflow, see [32, 28].

Note that this computational model can be seen as a specialization of the
actor model [23]. Operators in the (physical) dataflow graph can only react
to messages from other operators or progress notifications delivered by the
system itself. They are allowed to keep a local state, but cannot share state
with other operators.

The Timely Dataflow programming model, though relatively low-level, is
also very general. This allows one to easily implement many higher-level
programming models on top of it, with the added benefit of being able to
combine the different programming models in a single computation instead
of having to rely on separate, specialized systems for each purpose. An ex-
ample of a higher-level computational model implemented on top of Timely
Dataflow is Differential Dataflow [29, 8], a model which allows the processing
of continuously changing input data in an incremental way. Since this work
is focused on the underlying Timely Dataflow layer, the performance analy-
sis methods discussed can also be applied to any higher-level libraries built
on top of it, such as (for example) Differential Dataflow.

It has been shown that Naiad/Timely Dataflow is very efficient, provides a
high throughput and delivers results with very low latency [32].

2.2 The Timely Dataflow System

This work focuses on a newer implementation of the Timely Dataflow model
which is also called Timely Dataflow [6]. This prototype is functionally iden-
tical to Naiad apart from a small number of extensions and improvements.
It is implemented in the Rust programming language [5]. Hereafter, “Timely
Dataflow” (or “Timely” for short) refers to this prototype and the behavior
thereof, not the original implementation (Naiad) nor the theoretical model.
A prototype of Differential Dataflow also exists [4].

Listing 2.1 shows how a typical Timely Dataflow operator is implemented.
It displays an operator “WordCount” which receives words on its input
channel and counts how often the same word occurs within each epoch.
When it receives a notification indicating that a particular epoch ended (i.e.
when no more messages will be received for its timestamp), it will output all
the words seen in that particular input batch, along with a count indicating
how often a word was seen.

The unary (single in- and output) operator is defined by the unary notify
method. Its first parameter defines the partitioning function for the opera-
tor’s input channel. In this case, a hash function is used, as this will ensure
the same word will always be delivered to the same worker. The fourth

5

2. Background

1 let mut wordcounts_by_time = HashMap::new();
2

3 stream.unary_notify(
4 Exchange::new(|x| hash(x)),
5 "WordCount",
6 vec![],
7 move |input, output, notificator| {
8 input.for_each(|time, data| {
9 let mut wcs = wordcounts_by_time.entry(time.time())

10 .or_insert(HashMap::new());
11 for word in data.drain(..) {
12 *wcs.entry(word).or_insert(0) += 1;
13 }
14 notificator.notify_at(time);
15 });
16

17 notificator.for_each(|time, _num, _notify| {
18 if let Some(wcs) = wordcounts_by_time.remove(
19 &time.time()) {
20 output.session(&time)
21 .give_iterator(wcs.into_iter());
22 }
23 });
24 });

Listing 2.1: Example of a simple Timely Dataflow operator
(WordCount)

parameter of unary notify is a closure which defines the actual behav-
ior of the operator. This code is run each time the operator gets scheduled.
In the case of our WordCount operator, each time it gets scheduled it first
processes any potential new input messages (lines 8-15). For each batch of
messages, it looks up the already stored word counts for the particular times-
tamp in the operator’s local state (wordcounts by time). For each word
in the batch, it then updates its associated word count. Finally, a notification
for the completion of the epoch is requested from Timely. Subsequently, the
operator processes any notifications (lines 17-23) it received. For each notifi-
cation, it removes the stored word counts corresponding to the notification
timestamp (if any) from the local state and sends them through its output
channel.

Many Timely operators follow a similar pattern as the WordCount operator.
However, as the example shows, the operators have great freedoms, which
means they cannot be trusted to follow a specific pattern for our perfor-
mance analysis. One important detail to note is that operators are not called
when they received new messages or notifications, and there is no individ-
ual callback for either. Instead, they are pulling messages from their input
queues. The operators are simply scheduled repeatedly, even if no messages

6

2.2. The Timely Dataflow System

or notifications are available, hence they are essentially polling the queues
and notificators. For more information about Timely Dataflow’s operator
scheduling, see Section 4.1.1.

2.2.1 Scopes/Subgraphs

Dataflow graphs in Timely can also contain subgraphs, or scopes, which
as a whole behave in a similar way as individual operators. For example,
scopes are used to implement cycles in the dataflow graph. In such a case,
timestamps inside the subgraph are extended by an additional coordinate
indicating the loop iteration a message belongs to. The details are largely
irrelevant for this work, however.

ToStream

Map Input

MapInPlace

Concat

Feedback

Concat

ArrangeByKey

ArrangeByKey

Join

Concat

ArrangeByKeyGroupArrangedFlatMap

Map Consolidate Inspect Probe

BFS subgraph

Figure 2.3: Dataflow graph of the Differential Dataflow-based
breadth-first search (BFS) implementation. This computation is
included in the Differential Dataflow distribution [4].

7

2. Background

Figure 2.3 shows a Differential Dataflow-based BFS dataflow graph, which
includes a subgraph. The outermost scope, which is not explicitly shown, is
called the root scope and encompasses the whole dataflow graph.

Most of the example traces shown in this work are either based on the Dif-
ferential Dataflow-based BFS implementation shown in Fig. 2.3, which is in-
cluded in the distribution of Differential Dataflow [4], or the BFS implemen-
tation based on pure Timely Dataflow shown in Fig. 2.1 which is included
in Timely Dataflow’s distribution [6].

Timely Dataflow’s runtime behavior, including the relevant parts of its schedul-
ing, progress tracking logic and communication architecture is described in
more detail in Section 4.1.

2.3 Related Work

Critical path analysis was first introduced by Kelley and Walker [26] in the
context of project planning. In their model, the structure of a project is
modeled as a directed graph, wherein the edges represent jobs (activities)
and vertices mark the beginning or completion of the connected jobs. The
edge weights denote the estimated duration of each job, and the structure
of the graph models the dependencies between the jobs. The critical path is
defined as the longest path on the graph with regard to the edge weights. It
therefore dictates the total duration of the project. The concept of the critical
path was later applied to computer systems. Particularly, it is often used for
the analysis of parallel- and distributed programs and systems [39, 30, 14, 9,
10, 19, 24, 25, 35, 17], particularly MPI programs [36, 13, 12, 16] as well as
concurrent programming languages [34]. Furthermore, it has been applied
in areas such as the design of asynchronous circuits [38], processor design
[22] or the performance analysis of HTTP/TCP transactions [11].

The critical path model was first applied to the analysis of parallel and dis-
tributed computer programs by Yang and Miller [39]. They created the no-
tion of the “Program Activity Graph” (PAG), in which the edges represent
the activities of a computer program instead of the jobs in a project. The
activities can use any combination of resources, e.g. CPUs, I/O devices or
networks. Instead of using critical path analysis to make predictions about
certain characteristics of a project (e.g. its estimated time of completion)
based on a priori knowledge/estimates about the duration and dependen-
cies of jobs, they used it for post-mortem performance analysis of a pro-
gram. The PAG is thus constructed from the programs execution history
(trace) collected by appropriate instrumentation. To compute the critical
path, they used two different longest-path algorithms (adapted from their
shortest-path counterparts). The formal model presented in Chapter 3, like

8

2.3. Related Work

many other models used in this field, is heavily based on the original PAG
model.

In [30], Miller et al. describe a comprehensive performance measurement
system which further develops the techniques from [39], especially by ex-
tending the instrumentation to multiple layers of the software in order to
increase precision.

Broberg, Lundberg and Grahn [14] introduced an extended critical path anal-
ysis for multithreaded programs, which also deals with scenarios in which
there are more threads than processors (or cores).

Alexander et al. [9, 10] describe a number of different algorithms to compute
the k longest (near-critical) paths. This is useful because in any realistic
PAGs, there are usually a number of paths which are of a length almost
equal to the length of the critical path. Slightly improving the runtime of an
activity on the critical path might therefore result in another path of similar
length becoming critical. Therefore, knowing the longest path alone is not
always sufficient to assess the actual optimization possibilities of a particular
program. However, in data-parallel computations we expect the number of
near-critical paths to grow exponentially with the length of an execution
trace. As their best algorithms to compute the k longest paths have a time
complexity of at least O(ke), where e is the number of edges in the PAG,
they will not scale for an exponentially growing k. Limiting the number of
computed paths to a small, fixed number is possible but also significantly
reduces the usefulness of the near-critical path concept.

Hollingsworth [24, 25] introduced a highly specialized online algorithm
which computes the critical path during the program’s execution, without
needing to collect an execution trace. The algorithm works by piggyback-
ing instrumentation data onto data messages exchanged by the processes
during the execution. Each process also keeps a state which describes the
longest path ending in the particular process at any given time. Whenever a
process receives a message, it compares the length of the longest path of the
remote process (piggybacked onto the message) to the length of the longest
path ending at the local process, and updates the local state to represent the
maximum of the two. Depending on the number of messages exchanged,
this approach can have a quite low overhead. It can also produce intermedi-
ate results during the computation. However, since no trace is collected, it
is difficult to extend this approach to compute further metrics (e.g. the slack
of an activity) or to perform additional offline/online performance analysis
of the reference program.

Saidi et al. [35] apply a low-overhead approach similar to Hollingsworth’s
in order to perform a critical path analysis of a complete system, i.e. includ-
ing both user- and kernel-space software components as well as hardware
devices.

9

2. Background

Dooley and Kale [19] discuss a slightly more sophisticated variant of online
critical path detection for message-passing parallel programs. Furthermore,
they discuss a number of uses for the computed critical path profiles. Espe-
cially, they describe how to use the critical path information computed by
their online algorithm for automatic performance tuning by adjusting task
scheduling priorities accordingly.

Oyama et al. [34] describe a scheme to automatically instrument programs
written in high-level parallel languages in order to compute the critical path
online, also using a scheme similar to Hollingsworth’s.

Schulz [36] introduced a novel algorithm for finding the critical path of an
MPI application. It is based on the simple observation that the time a proces-
sor spent waiting (i.e. blocked) for an MPI message can never be part of the
critical path. The algorithm starts at the end of the trace, and then directly
backtracks along the PAG edges which belong to the critical path; it does
not need to process any vertices in the PAG which are not part of the critical
path. Therefore, the algorithm is very efficient and scales very well as the
number of workers/processors of the reference computation is increased, as
its runtime mostly depends on the number of edges of the critical path, not
on the number of edges/nodes in the complete PAG. Hence, this algorithm
was selected as the basis for the critical path algorithm described in this
work (see Chapter 3).

Böhme et al. [13, 12] implemented the backtracking algorithm efficiently and
also defined a number of performance indicators that help characterizing
bottlenecks in MPI programs.

One limitation of critical path analysis is that it is based on the runtime
of the activities in the program activity graph. Since the runtime of an
activity can vary depending on the underlying hardware (and in fact, the
runtimes of different activities can vary to a different degree), the portability
of critical path analysis is limited. Chen and Clapp [16] address this issue by
introducing critical path candidates, which are potential critical paths based
on their instruction- and communication counts instead of their runtime.
Critical path candidates thus capture intrinsic properties of the program
and are independent of the microarchitecture of the machines used to run
the program. Consequently, their framework also allows them to predict
what effects changes in the underlying hardware architecture have on the
critical path.

A common problem which occurs when one tries to apply critical path anal-
ysis to complex, heterogeneous systems is that the causal relationships be-
tween activities are not always known. This is usually solved by apply-
ing expert knowledge about the system, which is impractical for large and
complex systems. In the context of Internet services, the Mystery Machine

10

2.3. Related Work

developed by Chow et al. [17] is able to automatically infer such relation-
ships based on a large amount of pre-existing log data collected from past
requests to the service. The calculation of this causal model is parallelized
as a Hadoop job. Based on the trace data and the inferred model of the
system, the Mystery Machine can then compute the critical paths as well as
the slack of particular activities (called segments in their work).

In the context of data-parallel systems (specifically Spark [40]), Ousterhout et
al. [33] employ blocked time analysis, which is a what-if analysis used to quan-
tify the performance improvement typical data-parallel workloads would
achieve under the premise that they would never block on a resource (e.g. a
disk or a network device). The results of their work suggests that contrary
to widely-held assumptions, such computations are often bottlenecked on
the CPU rather than I/O operations. In such cases, critical path analysis
could help to further find the specific (computation-) activities which, once
optimized, would improve end-to-end task completion time the most. Since
the kind of instrumentation needed for blocked time analysis is very simi-
lar to the kind this work uses for critical path computation, we argue that
future work should focus on combining these two approaches into a com-
prehensive performance analytics framework for data-parallel systems (for
more information about future work, see Chapter 8).

Morton et al. [31] used the critical path concept to provide progress esti-
mates for long-running queries which consist of directed acyclic graphs of
MapReduce jobs. Rather than computing the critical path based on exe-
cution traces, it is computed based on individual task duration estimates,
which allows the prediction of the total job completion time.

11

Chapter 3

Formal Performance Model

The critical path of a distributed program execution is commonly defined
on a particular execution’s Program Activity Graph (PAG) [39, 30, 9, 10].
Each activity of the program (e.g. the execution of a job or the transmission
of data) defines an edge in the PAG, with its weight being equal to the
duration of the activity. The structure of the PAG defines the precedence
relationship between the activities. The critical path is then simply defined
as the longest path in the PAG. Thus, any performance improvement of an
activity on the critical path will then result in an equal improvement in the
total runtime of the program, assuming the critical path does otherwise not
change as a result of the optimization.

In this chapter, we describe an adapted, more detailed version of this model
for real-time, trace-based critical path analysis of data-parallel systems. Sec-
tion 3.1 describes the basics of our model. Section 3.2 describes the types of
activities we consider in detail. In Section 3.3 we discuss additional proper-
ties of our model which are both helpful to check the correctness of a sys-
tem’s instrumentation as well as for the critical path computation. Finally,
Section 3.4 describes an efficient algorithm to compute the critical path in
our model.

3.1 Basic Performance Model

We start by precisely defining what we consider to be an activity in our
model:

Definition 3.1 (Activity) An activity is a logical operation performed at any level
of the software and hardware stack. Each activity is associated with two timestamps
[start,end], start ≤ end, that denote the time its execution started and
ended with respect to a global clock C.

13

3. Formal Performance Model

An activity can be either an operation performed by a worker (worker activ-
ity) or a message transfer between a source- and destination worker (com-
munication activity). Typically, worker activities are the execution of a collec-
tion of code instructions, but can also be I/O operations performed by the
worker (i.e. reads/writes to external systems which are not modeled, e.g.
mass storage devices, network interfaces, etc.). Communication activities
are any interactions between workers, for example via a network or shared
memory message passing.

Modern data-parallel systems consist of workers that perform activities,
however, the term “worker” in the literature may refer to a node in a cluster,
a virtual machine, a process or even a thread in a single multi-core machine.
To provide a consistent terminology, workers in our model are defined as
follows:

Definition 3.2 (Worker) A worker is a logical execution unit that performs a series
of activities sequentially, i.e. one activity after the other.

Definition 3.2 simply states that the activities of the same worker cannot
overlap in time. Given two activities of a worker, ai:[starti,endi] and
aj:[startj,endj], i 6= j, the following holds: endi ≤ startj or starti ≥
endj.

At any point in time τ with respect to a global clock C, a worker can be in
one of three states: unborn, running or terminated. A worker is considered to
be in the unborn state before it was started. After it was started, a worker is
in the running state, and therefore performing a sequence of activities. After
the worker has finished performing activities, it is in the terminated state. The
only state transitions a worker can perform are from unborn to running and
from running to terminated. Any worker which is not already in the running
state at the beginning of the computation must be spawned by a different,
already running worker. This needs to be reflected by a communication
activity from the running worker to the newly spawned worker whose end
timestamp marks the destination worker’s transition to the running state.

Definition 3.3 (Activity Graph) An activity graph G = (V, E) is a directed
labeled acyclic graph where:

• V is the set of vertices. A vertex v ∈ V stands for an event, i.e. the start or
the end of an activity, and is associated with a timestamp t that equals the
respective start or end timestamp of the activity.

• E ≡ Ew ∪ Ecomm ⊂ V ×V, Ew ∩ Ecomm = ∅, is the set of directed edges. An
edge e = (vi, vj) ∈ E stands for an activity a:[start,end], where vi[t] =
start and vj[t] = end, and is associated with a type p and a weight w. The
latter equals the total amount of time units spent in performing the activity,
i.e. e[w] = vj[t] - vi[t] = end - start.

14

3.1. Basic Performance Model

An edge e ∈ Ew denotes a worker activity whereas an edge e ∈ Ecomm denotes
a communication activity, i.e. an interaction between two workers.

The direction of an edge e from node v1 to node v2 denotes time precedence
between the source and the destination node.

0 35 60 100 120

0 25 50 70 135 150

OP / 35 OP / 25 wait / 40
OP /
20

OP / 25 OP / 25 OP / 20 wait / 65 OP / 15

comm /
15

comm /
30

comm / 15

Worker 1

Worker 0

Figure 3.1: Example of an activity graph, including edge types,
weights and event timestamps. OP denotes data operation activ-
ities, comm denotes communication activities, and wait denotes
waiting activities.

Figure 3.1 shows a simple activity graph for a two-worker computation.
Note that there are two subgraphs of all the worker activities. The two
subgraphs are connected with each other only through communication ac-
tivities.

Symbol Description

a:[start,end] activity a with start
and end timestamps

G activity graph

G[ts ,te]
snapshot of activity graph G
in the time interval [ts,te]

∏te
ts
(e)

projection of edge e on
the time interval [ts,te]

v[t] timestamp t of vertex v
e[w] weight w of edge e
e[p] type p of edge e
||~P|| total weight of edges in path ~P
Ew set of worker activities

Ecomm set of communication activities
Ewait set of waiting activities (Ewait ⊆ Ew)
Nτ number of running workers at time τ

Table 3.1: Notation used throughout this chapter.

15

3. Formal Performance Model

Since we want to be able to compute the critical path in real-time for long-
running computations, we have to define a way to slice the complete ac-
tivity graph into snapshots which only contain activities in a certain time
interval. Doing so also makes it possible to compute the critical path for
only a specific part of the whole computation which might be of special
interest, e.g. the processing of a query. Definition 3.4 defines how edges
from the complete activity graph are projected on a time interval [ts, te].
Intuitively, activities which are contained completely in the time interval are
left as they are by the projection, whereas activities which overlap with the
interval boundaries are cut off to fit into the interval.

Definition 3.4 (Edge Projection) Let e = (vi, vj) be an edge of an activity graph
G = (V, E), where e ∈ E and vi, vj ∈ V. Let also [ts,te], ts ≤ te, be a time
interval with respect to a global clock C. The projection of e on [ts,te] is an edge
of the same type as e and is defined as follows:

∏te
ts
(e) =

(vi, vj) iff ts ≤ vi[t], vj[t] ≤ te
(u1, u2) : u1[t] = ts, iff vi[t] < ts, te < vj[t]u2[t] = te
(u, vj) : u[t] = ts iff vi[t] < ts ≤ vj[t] ≤ te
(vi, u) : u[t] = te iff ts ≤ vi[t] ≤ te < vj[t]
none otherwise

Definition 3.5 (Graph Snapshot) Let G = (V, E) be an activity graph, and
[ts,te], ts ≤ te, be a time interval with respect to a global clock C. The snap-
shot of G in [ts,te] is a directed labeled acyclic graph G[ts,te] that is constructed by
projecting all edges of G on [ts,te].

0 35 60 85

0 25 50 70 85

85

OP / 35 OP / 25 wait / 25

OP / 25 OP / 25 OP / 20
wait /

15

comm /
15 comm /

15

(a) G[0,85]

85 100 120

85 135 150

85

wait /
15 OP / 20

wait / 50 OP / 15

comm /
15

comm / 15

(b) G[85,150]

Figure 3.2: Slicing of the activity graph at t = 85, resulting in
two graph snapshots.

Figure 3.2 illustrates how snapshots are created from the activity graph
shown in Fig. 3.1. Note that at the snapshot boundary (t = 85), new nodes
were introduced.

16

3.2. Types of Activities

To simplify the description of properties and definitions in the upcoming
sections, we also introduce the following three definitions:

Definition 3.6 (Minimum-Timestamp Vertices) For an activity graph or graph
snapshot G = (V, E), the set Vs is the set of minimum-timestamp vertices in G:

Vs := {v ∈ V | @v′ ∈ V : v′[t] < v[t]}

Definition 3.7 (Maximum-Timestamp Vertices) For an activity graph or graph
snapshot G = (V, E), the set Ve is the set of maximum-timestamp vertices in G:

Ve := {v ∈ V | @v′ ∈ V : v′[t] > v[t]}

Definition 3.8 (Precursor) For an activity graph G = (V, E), the set of incoming
edges (activities) for a vertex v ∈ V is denoted as Precursor(v):

Precursor(v) := {(ui, uj) ∈ E | uj = v}

3.2 Types of Activities

A logical operation may consist of multiple sub-operations which may span
multiple levels of the software stack, including user-defined logic, system-
level operations (e.g. serialization), OS scheduling, TCP requests, etc. The
level of granularity at which activities are tracked depends on the instrumen-
tation of the reference systems and varies significantly between use cases. In-
tuitively, a multi-layered activity tracking approach allows for more detailed
performance analysis but introduces more overhead in the performance of
the reference systems.

In Section 3.1, we have already mentioned the two main classes of activities:
worker- and communication activities. In this section, we further describe
these classes and divide them into the subtypes we considered for the pur-
poses of this work.

3.2.1 Communication Activities

Any direct interaction between two workers is modeled as a communication
activity. Communication activities serve two main purposes: firstly, they
indicate dependencies between activities of two different workers and sec-
ondly, they model the time an external system (e.g. a network infrastructure)
spent to transfer data. Communication events can only take place while a
worker is running, therefore the source worker must be running at the start
timestamp of the communication activity while the destination worker must
be running at the end timestamp.

17

3. Formal Performance Model

This activity type can be further categorized by its transfer mechanism or,
orthogonally, by its purpose in the reference system. The transfer mecha-
nism can be a network, IPC or even shared-memory transfer between two
threads.

Shared-memory communication is assumed to be instant, i.e. the data is
available immediately to the receiving worker after it was copied to the
shared-memory buffer. Thus, such communication activities can have a zero
weight. Note that the copy operations to- and from the buffer are performed
by the source- and target workers respectively, hence they are part of worker
activities, whereas the communication activity starts right after the data was
copied to the buffer.

Depending on the type of the modeled system, the purposes of communica-
tion activities can vary. In the case of data-parallel systems, communication
activities show the exchange of messages, which can be further divided into
two classes: progress messages and data messages. The former include meta-
data about the worker state (the progress in its computation), whereas the
latter amount to batches of data exchanged between workers. Depending
on the particular system design, progress messages are exchanged between
workers directly, like in Storm [37] and Timely/Naiad [32, 28], or indirectly
through a central Task Manager, like in Spark [40] and Flink [21, 1]. In the
latter case, since communication activities need to connect two workers, the
Task Manager needs to be modeled as a worker if the intention is to include
the progress messages in the critical path analysis.

In some systems, the release of a lock could also be modeled as a communi-
cation activity.

3.2.2 Worker Activities

Worker activities are performed by workers during the time they are in the
running state. We consider the following subtypes for worker activities:

Data Operation. This type models the execution of a data operator, e.g. any
operator in the dataflow graph of a streaming engine. In the MapReduce
ecosystem, it would for example model a map or a reduce operation.

In our model, data compression (as well as de-compression) as performed
by many systems (e.g. Spark [40]) to reduce the total size of shuffled data,
are special types of data operation activities. They often occur before and
after a message transmission or an I/O operation (e.g. before spilling data
to disk).

Serialization. This type of activity corresponds to serializing and de-serializing
data, which is a common operation when messages have to be transmitted

18

3.2. Types of Activities

over the network to different workers of the system or when messages have
to be exchanged between workers that run within different processes on the
same physical machine.

Buffer Management. This type of activity is used to capture the time spent
in maintaining the worker input and output buffers at runtime. Buffers
are widely used in the form of queues by streaming engines like Storm [37,
2], Flink [1, 21], and Naiad/Timely [32], for buffering messages exchanged
between different operators in the dataflow graph. Buffers are also used for
asynchronous read and write operations when data is moved from/to disk,
e.g. in Spark.

The time spent in buffer management corresponds to the time spent in push-
ing/pulling data into/from the buffers; this includes the time needed to ac-
quire and release the respective locks (if any), and also the time spent in
allocating and de-allocating memory in case of dynamic memory manage-
ment.

Waiting. During this type of activity, the worker is waiting for a commu-
nication event of any kind from another worker, e.g. the arrival of a batch
of data, a progress message, a response/acknowledgement for a TCP re-
quest, a lock release, etc. Waiting means that the worker is either spinning
(e.g. polling for input like in the Naiad/Timely system [32]) or blocked in a
function call (e.g. during a read() or select()/poll() system call on
some socket(s)). Excessive occurrence of waiting activities may indicate inef-
ficient synchronization barriers, high load imbalance, or network congestion,
among others.

The waiting activities have a special meaning when it comes to critical path
analysis. By definition, the worker does not produce anything useful during
the time it is waiting, therefore no other part of the computation actually
depends on the waiting activity being performed. Also, a waiting activity
indicates that there are other activities being performed at the same time, for
whose completion the worker is waiting. Therefore, waiting activities can
never be on the critical path.

Furthermore, the instrumentation needs to make sure that the end event
of a waiting activity corresponds to the end event of the communication
activity that caused the worker to wake up from the waiting state. See also
Property 3.11.

Waiting for Input. This activity type is similar to a waiting activity, the
difference being that during this activity, the worker does not wait for a
communication activity from another worker, but rather for input data from
an external (unobserved) system. In data-parallel systems, it is sometimes
the case that a worker can wait for input from an external system and from

19

3. Formal Performance Model

other workers simultaneously (e.g. in a system which alternates polling mes-
sage and input queues). In this case, the type of event that terminated the
waiting state defines whether the waiting phase was a waiting activity or a
waiting for input activity.

Note that this activity has no special meaning to the critical path analysis
like the waiting activity type has, in fact it is treated like any other worker
activity and can also be part of a critical path. This activity can thus be used
to detect situations in which the reference system’s performance is limited
by the performance of the external system that supplies input data.

I/O. During this type of activity, the worker is reading/writing input/out-
put from/to an external system (e.g. a disk).

Idle. This is a special type of activity that is used to capture the time a
worker is suspended by the scheduler and thus, is idle. A worker may be
suspended due to various reasons, e.g. when it shares the same physical
core with other workers of the system or when the garbage collection starts
running in JVM-based systems like Spark and Flink [40, 21, 1].

The time a worker is idle (along with the actual cause) is captured through
the appropriate instrumentation of the underlying OS or runtime environ-
ment/virtual machine. It is important to note that a worker is still con-
sidered to be in the running state according to our model, since it is still
performing activities, even though it might be temporarily suspended by
the scheduler (in which case it will be performing the idle activity).

Unknown. This type of activity is used for completeness, i.e. to model any
worker activity that is not captured by the instrumentation of the reference
system. A large number of unknown activities is usually an indicator of
inadequate instrumentation. The automatic characterization of unknown
activities is an interesting problem but is out of the scope of this work.

3.3 Implications for Instrumentation

Adding instrumentation to a reference system is usually a manual and there-
fore error-prone task. From the perspective of our performance analysis, the
instrumentation of the reference system must satisfy some additional proper-
ties discussed in this section, otherwise the critical path is ill-defined. These
properties constitute one of the contributions of this work. They can be
checked by the system performing the performance analysis; the checks are
efficient and can even be performed in real-time.

20

3.3. Implications for Instrumentation

Property 3.9 (Minimum in-degree) Let G[ts,te] = (V, E) be the snapshot of an
activity graph G in the time interval [ts,te]. Any vertex v ∈ V \Vs has in-degree
at least one.

Remember that Vs is the set of minimum-timestamp vertices as defined in
Definition 3.6. Property 3.9 simply states that any event that has prior events
must be caused by an activity that occurred earlier in time. In other words,
“out-of-the-blue” events which are not in Vs indicate an insufficient instru-
mentation with respect to the critical path analysis.

Property 3.10 (Communication Existence) Let G[ts,te] = (V, E) be the snapshot
of an activity graph G in [ts, te], and τ ∈ [ts, te] be a point in time with respect to
a global clock C. Let S ≡ {e = (vi, vj) ∈ Ewait ⊆ Ew | vi[t] ≤ τ ≤ vj[t]}. If
|S| = Nτ, where Nτ is the number of running workers of the reference system at
time τ, then ∃e′ = (vk, vm) ∈ Ecomm ⊆ E for which vk[t] ≤ τ ≤ vm[t].

Property 3.10 states that there can be no point in time where all system work-
ers perform waiting activities while no communication activity takes place.
By definition, such states are problematic and can be observed only in the
case of deadlocks. Hence, the existence of such points in the activity graph
of a non-blocked computation indicates an insufficient instrumentation with
respect to the critical path analysis. To prevent this, the instrumentation (or
any post-processing logic applied to the trace recorded by the instrumen-
tation) should make sure no waiting activities are created as long as the
corresponding communication activity — which caused the waiting activity
to end — has not been observed.

This property can be easily observed in the activity graph in Fig. 3.1 as well
as the graph’s snapshots in Fig. 3.2, for example at time t = 85. At this point,
both workers are waiting, but there is an in-flight communication activity at
the same time, which will eventually wake up one of the workers at t′ = 100.

Property 3.11 (Wait State Termination) In the complete activity graph G =
(V, E), for every waiting activity (w1, w2) ∈ Precursor(w2), there exists a non-
waiting activity (a1, w2) ∈ Precursor(w2):

∀w
(
(w1, w2) ∈ Precursor(w2) ∧ w[p] = wait

)
=⇒ ∃a

(
a ∈ Precursor(w2) ∧ a[p] 6= wait

)
Property 3.11 follows directly from the definition of the waiting activity in
Section 3.2. Remember that a waiting activity denotes the fact that a worker
is waiting for a communication event (e.g. a message arrival) from another
worker. The end timestamp of a waiting activity is the exact time when such
a communication event occurs, therefore both the communication activity
and the waiting activity have the same end vertex.

21

3. Formal Performance Model

This property also applies to the graph snapshot, except for waiting activities
at the end of the snapshot which were split by the edge projection. Their
termination occurs in a later snapshot. For waiting activities which were
only split at the beginning of a snapshot or not at all, the property holds.

3.4 Critical Path Algorithm

We define a critical path as a path on an activity graph snapshot G[ts,te] which
does not contain waiting activities and whose length is maximal:

Definition 3.12 (Critical Path) Let G[ts,te] = (V, E) be the snapshot of an activity
graph G in the time interval [ts,te]. We define the set of paths H on G[ts,te] as
H = {~P ⊆ E \ Ewait | @~P′ ⊆ E : ||~P′|| > ||~P||}, where ~P denotes a path in G[ts,te]

and ||~P|| denotes the total weight of all the edges in ~P, i.e. ||~P|| = ∑∀e ∈ ~P e[w].

Any path ~P ∈ H is a critical path of the activity graph G in the time interval
[ts,te].

Any increase of the duration of any activity on a critical path results in an
increase of the total runtime of the computation. Any decrease might result
in a decrease of the total runtime, although this is not guaranteed, as there
might be other critical paths whose length did not change as a result of the
decrease.

The critical path as defined in Definition 3.12 is based on the observation that
during any waiting activity, some other part of the computation (either an-
other worker or the network) must be performing activities for whose com-
pletion/results the worker is ultimately waiting. Therefore, those activities
should be on the critical path as they are what is causing the computation
to be delayed, and not the waiting activity itself.

Another way of looking at it can be that any delay in a predecessor activity
to a waiting activity only decreases the duration of the waiting activity and
does not increase the duration of the overall computation. Therefore, it
cannot be part of the critical path. This observation specifically, but also the
general observation that waiting activities cannot be on the critical path, was
originally described by Schulz [36]1.

Note that there may be more than one critical path for a given graph snap-
shot (i.e. the size of H may be greater than one). For example, consider
a computation in which two workers are processing a perfectly balanced
workload and are not communicating with each other. If we assume that
both workers start and terminate simultaneously, the corresponding activ-
ity graph would be a disconnected graph consisting of two paths of equal

1Hollingsworth’s [25, 24] algorithm implicitly also makes use of this fact.

22

3.4. Critical Path Algorithm

length, one for each worker. Since both paths have the same length (and
both do not contain waiting activities), they both would be part of the set of
critical paths H.

Algorithm 1 Critical path algorithm

procedure CriticalPath(G[ts,te] = (V, E))
~Pcritical ← ∅
let Ecritical = {e = (ui, uj) ∈ E | uj ∈ Ve ∧ e[p] 6= wait}
while Ecritical 6= ∅ do

let a = (v1, v2) be an arbitrary edge from Ecritical
~Pcritical ← ~Pcritical ∪ {a}
let Ecritical = {e ∈ Precursor(v1) | e[p] 6= wait}

end while
return ~Pcritical

end procedure

An algorithm that efficiently computes one critical path for a graph snapshot
is shown in Algorithm 1. It makes direct use of our definition of the critical
path in 3.12, which says that waiting activities cannot be on the critical path.
This algorithm is heavily based on the backtracking algorithm described by
Schulz [36].

The algorithm starts with Ecritical being the set of non-waiting activities at
the end of the activity graph snapshot, i.e. those having an end vertex
uj ∈ Ve. Ecritical always contains activities that are on some critical path.
Then, while Ecritical is not the empty set, the algorithm selects an arbitrary
activity a = (v1, v2) from Ecritical and extends the critical path ~Pcritical by a. Af-
terwards, it recomputes the set Ecritical to be the set of non-waiting activities
that are precursors to the start vertex vs of the last added activity a, thus
following the edges of the critical path backwards with regard to their event
timestamps.

85 100 120

85 135 150

85

wait / 15 OP / 20

wait / 50 OP / 15

comm /
15 comm / 15

Figure 3.3: Critical path in G[85,150].

23

3. Formal Performance Model

Figure 3.3 and 3.4 show the critical paths of the example graph snapshots
G[85,150] and G[0,85] as found by the CriticalPath algorithm. For the snap-
shot G[85,150], which is at the end of the trace, Ecritical only ever contains one
element at each step of the algorithm. This means there is no ambiguity, and
therefore the critical path found is the only critical path in G[85,150].

0 35 60 85

0 25 50 70 85

85

OP / 35 OP / 25 wait / 25

OP / 25 OP / 25 OP / 20

wait /
15

comm /
15 comm /

15

Figure 3.4: One possible critical path in G[0,85].

In the other snapshot, G[0,85], the algorithm also starts out with only a single
node in Ecritical, as all other edges ending on a maximum-timestamp vertex
are waiting activities. However, at the node with timestamp 50, there is some
ambiguity. The algorithm could either follow a critical path backwards along
the communication activity or along the worker activity. As illustrated, only
one critical path is computed in this case.

Note that this critical path algorithm does not need to take into account the
weights of the different edges at each hop at all. Instead, it reduces the
problem to following along edges which do not represent waiting activities.
For a given graph snapshot, all paths computed by the algorithm will have
exactly the same total weight (the length of the critical path), which is al-
ready known at the beginning given the maximum- and minimum vertex
timestamps of the snapshot.

We now show that Algorithm 1 actually computes a critical path for a given
snapshot:

Theorem 3.13 Any path ~Pcritical computed by CriticalPath(G[ts,te]) is a critical
path of G[ts,te], i.e. ~Pcritical ∈ H.

Proof sketch. We first show that CriticalPath(G[ts,te]) always finds a path
~P with no waiting activities that starts at some vertex vs ∈ Vs and leads to
some vertex ve ∈ Ve. It is easy to see that CriticalPath computes a valid
path as it only adds edges from the set Ecritical to ~Pcritical, and after the first
edge is added Ecritical is always defined such that it only contains edges that
are connected to the start vertex of the previously inserted edge. Also, Ecritical
as defined by the algorithm never includes waiting edges, so we know that
the path ~Pcritical cannot contain waiting activities.

24

3.4. Critical Path Algorithm

Now, we distinguish between the case when Ecritical 6= ∅ before the while-
loop is entered and the case in which Ecritical = ∅ at that point.

The latter case is trivial: if Ecritical is empty, it must be that either E = ∅
or alternatively, the snapshot ended with all workers performing waiting
activities and no in-flight communication activity. But Property 3.10 says
this cannot happen at any time. Therefore E = ∅ and only the empty
path (with no edges) exists in the graph. This is exactly what the algorithm
returns in this case, as the while-loop is never entered and therefore ~Pcritical
contains no edges.

In the former case, we know that there is at least one edge added to ~Pcritical
and that it ends on a vertex ve ∈ Ve. Therefore, what is left to show is that
Ecritical is only equal to the empty set when ~Pcritical already contains an edge
e with a starting vertex vs ∈ Vs. To show that this holds as well, we make
use of Property 3.11 and Property 3.9. If Precursor(v1) contains a waiting
activity, Property 3.11 implies that it must also contain a non-waiting activity,
in which case Ecritical is not empty. If Precursor(v1) does not contain a
waiting activity, Property 3.9 still implies that Precursor(v1) must contain
at least one precursor edge for v1, unless v1 ∈ Vs, in which case ~Pcritical
already contains an edge e with a starting vertex vs ∈ Vs. Therefore, Ecritical
is only equal to the empty set after an edge with a starting vertex from the
set Vs is part of the path ~Pcritical.

Hence, we have shown that that CriticalPath does indeed compute a valid
path containing no waiting activities from some vs ∈ Vs to some ve ∈ Ve.
What is left to show is that any such path is a critical path, i.e. there exists
no longer path in G[ts,te]. As the vertex timestamps in G([ts,te] correspond to
the start- or end-timestamps of the activities connected to a vertex, it is easy
to see that the length of any path from a vertex vs to a vertex ve is equal to
ve[t]− vs[t]. Because vs[t] is the minimal- and ve[t] the maximal timestamp
in the snapshot, there cannot exist a longer path than ~Pcritical. Thus, ~Pcritical is
a critical path of G[ts,te].

�

Because this critical path algorithm directly follows the trace along the crit-
ical path, it can be implemented very efficiently. For details of how this
algorithm was applied to Timely Dataflow, see Section 5.3.

25

Chapter 4

Critical Path Computation:
Preliminaries

While the critical path model discussed in Chapter 3 is sufficiently general,
it does not address all issues that arise when one tries to apply critical path
analysis to a system such as Timely Dataflow. Namely, it does not specify
how to instrument a system to collect execution traces nor how to construct
the activity graph in such a way that it can be processed efficiently.

This chapter focuses on Timely’s internals, how it was instrumented, and
how the event log data produced by the instrumentation is prepared for the
critical path analysis.

Section 4.1 discusses Timely’s runtime behavior, including operator schedul-
ing, message transfer and progress tracking. The system’s instrumentation
is discussed in Section 4.2. Section 4.3 focuses on how the event logs are pro-
cessed to form program activities. It also discusses how clock skew between
different physical machines is handled.

4.1 Timely Dataflow’s Runtime Behavior

Before we can define which sections of Timely we need to instrument, it
is necessary that we have a good understanding of how Timely’s runtime
works. Later, understanding Timely’s behavior will also be important to be
able to infer the correct dependencies between events and activities as well
as to figure out waiting phases during a worker’s execution.

4.1.1 Operator Scheduling

Most Timely programs share roughly the following structure: First, each
worker defines the dataflow graph of the computation. Then, it repeatedly
reads some input data and calls root.step() until the computation is

27

4. Critical Path Computation: Preliminaries

finished1. Each time root.step() is called, all the operators defined in the
dataflow graph are scheduled exactly once. More precisely, root.step()
causes the whole graph to be scheduled once. Remember that in Timely,
the dataflow graph is structured into subgraphs (scopes). Each subgraph
behaves like an operator itself, and is thus treated as such by its containing
subgraph. The outermost subgraph is called the root subgraph/scope. If a
subgraph is scheduled, it performs the following actions which are relevant
to this work:

1. It schedules all its child operators

2. It exchanges progress messages with other workers

3. It applies any newly received progress information to its child opera-
tors

Therefore, if root.step() is called once, it recursively schedules all sub-
graphs and their respective children. This causes all the operators to be
scheduled in the same order, in a round-robin way. Figure 4.1 shows an
visual example taken from a trace which shows a worker executing a single
step of a simple BFS computation (the dataflow graph of this computation
is shown in Fig. 2.1).

1 2 3

time

Figure 4.1: A single step of the Timely-based BFS implementa-
tion. 1 shows the scheduling of all the operators, including
the exchange of data messages (solid lines). The second opera-
tor was not active, which is why it is displayed in a lighter color.
2 shows the exchange of progress messages (dashed lines), and
3 indicates when new progress is pushed onto the operators

(this part is not instrumented, which is why the area is blank).

Note that Timely does not have a sophisticated scheduler. Instead, opera-
tors are scheduled regardless of whether they have any work to do or not.
Therefore, it often happens that an operator is scheduled even though its

1It is also possible that only one of the workers is responsible for reading input data.

28

4.1. Timely Dataflow’s Runtime Behavior

message queues are empty and no new progress notifications are available.
In such cases, the operator will only check its message queues and check for
any available notifications before stopping again2. When an operator does
perform useful work, i.e. when it produces/consumes any messages or re-
quests/receive progress notifications, it is said to have been active or having
shown activity (these terms should not be to be confused with program ac-
tivities; an operator which was executed but inactive also forms a program
activity).

4.1.2 Progress Tracking

As mentioned in the previous section, each subgraph is responsible for ex-
changing progress messages with other workers. After a subgraph has
scheduled all its child operators, if any of them have shown activity, the
subgraph will continue on to broadcast a progress message to all the equiv-
alent subgraphs on all the workers (including itself) telling them about the
progress which has been made. Additionally, it will read any new progress
messages originating from other workers (and from itself) from its queues
and push new progress information onto its child operators. Finally, it will
report back to its containing subgraph any progress the subgraph made, just
like regular operators do when they stop. Remember that subgraphs them-
selves are treated like normal operators; hence different subgraphs on the
same worker exchange progress information through this push/pull mecha-
nism.

Note that progress notifications are not equal to progress messages or up-
dates. Each operator which made progress produces a progress update. Multi-
ple progress updates are collected and exchanged as progress messages. Any
progress message, upon the processing of the contained updates, may or
may not trigger the availability of a notification for a particular operator. A
notification is therefore not a message which is exchanged between work-
ers, but rather the potential result of the combined application of multi-
ple progress updates (potentially from multiple progress messages) by each
worker’s progress tracking logic.

The fact that subgraphs only push progress updates onto their children after
they were already scheduled can cause some additional delay between the
arrival of a progress message and the time an operator actually sees its
contents.

As an example, consider a computation with a nested subgraph, such as
the Differential Dataflow-based BFS implementation shown in Fig. 2.3. An
excerpt of an execution trace of this computation is illustrated in Fig. 4.2.

2Timely’s programming model does not enforce this behavior, but properly implemented
operators usually follow this pattern.

29

4. Critical Path Computation: Preliminaries

1 22 3

Same ArrangeByKey operator

inner scope

outer scope

Figure 4.2: Nested scopes and delayed pushing of progress up-
dates onto operators.

The red rectangles indicate the root scope which is scheduled at each step,
and the blue rectangles indicates the inner scope of the BFS program.

At 1 , the outer subgraph has new progress information available (from the
received progress message) and pushes it onto its child operators, including
the inner subgraph. In the next step of the computation, the outer subgraph
schedules all its child operators, including the inner subgraph. The inner
subgraph in turn also first runs all its child operators and only afterwards ap-
plies any new progress information to them (2). Hence, the new progress
information which was pushed onto the inner subgraph by the outer sub-
graph at the end of the previous step (1) is only now pushed onto the
operators contained in the inner subgraph. Therefore, children of the inner
subgraph will have to wait for the next step until they will actually be able
to react to any notifications based on progress made by the outer subgraph.
This is visible when at 3 , an operator becomes active, even though no new
message or progress message arrived since the last time it was scheduled.
This activity is in fact the result of a notification which was triggered by
progress information pushed onto the operator at 2 . This propagation de-
lay of progress information makes inferring dependencies between operator
activity and the arrival of progress messages more difficult. Also, the exact
delay is highly dependent on the time the progress tracking logic is called
as well as the specifics of Timely’s scheduling algorithm.

30

4.1. Timely Dataflow’s Runtime Behavior

4.1.3 Communication between Workers

The only interactions between workers in Timely Dataflow take place through
message- and progress message transmissions. Progress messages are ex-
changed, as described in the previous sections, at the end of a subgraph’s
execution, while data messages are generally exchanged during the execu-
tion of operators. One notable exception is Timely’s Input operator, which
gives the user access to its output channel directly. Thus, the application can
send messages while the Input operator is not scheduled. Data messages
can only be exchanged over the channels defined by the dataflow graph,
whereas progress messages are broadcast by every scope/subgraph.

Aside from these differences, progress messages and data messages are
transmitted the same way, therefore “message” can mean a progress mes-
sage or a data message from here on in this section. We differentiate be-
tween three types of message exchanges: worker-local, process-local and
inter-process/networked.

Worker-local and process-local messages are directly appended to the re-
spective input queues of the target operator on the target worker thread
by the sending worker. Timely uses non-blocking queues (which can grow
infinitely large) for this purpose.

Messages that need to be sent to a worker thread residing on a different
process are sent over TCP/IP. Each Timely process maintains a single TCP
connection to each other Timely process. The dataflow- and progress chan-
nels leading to workers in a particular process are multiplexed over the sin-
gle connection to that process. For this purpose, each channel is assigned a
communication channel identifier, which is different from the channel iden-
tifiers used for logical channels in the dataflow graph. For each connection
a process maintains, two dedicated threads are responsible for sending and
receiving messages. The sender thread reads messages sent by operators
from a queue and sends them over the TCP connection, from which the
receiver thread reads the messages and puts them into the target opera-
tor’s/subgraph’s input queue.

When applying the model from Chapter 3, one could model the sender/re-
ceiver threads as workers themselves. This could be helpful to find communi-
cation bottlenecks, and to split the message transfer time into transmission
(worker activity) and propagation time (communication activity)3. However,
treating the sender/receiver threads as workers would also require more in-
strumentation to detect waiting phases during their execution, and would
thus add a lot of complexity to the problem. Since the threads are not do-
ing much interesting work, in fact, they only have one purpose each, we

3Technically, it could be split into even more fine grained categories, e.g. to separate the
time a message spent buffered by the OS.

31

4. Critical Path Computation: Preliminaries

decided not to model them as actual workers. Nonetheless, we still want to
track the time messages spent in the send/receive buffers and how much
time the transmission plus propagation of messages (i.e. the transfer of mes-
sages) took. This can be solved easily by extending program activities by
two simple attributes for the send- and receive buffer times.

Worker 1

Worker 0 OPA

OPB

send buffer
time

transfer time receive
buffer time

Figure 4.3: Message transfer phases in Timely Dataflow. The
transfer time includes both the transmission and propagation
over the network. The horizontal lines show the time a message
spent in a buffer. The vertical lines leading to/from the opera-
tors designate the time a message was read/put into a queue.

Figure 4.3 shows how a message transmission is modeled as a result. The
send buffer time is the time a message spent in a queue waiting to be trans-
mitted by the sender thread. The transfer time is the time a message spent
on the wire, staring from the beginning of transmission until the whole mes-
sage arrived at its destination node. Finally, the receive buffer time specifies
how long a message spent in the input queue of an operator/subgraph un-
til it was read. The actual communication activity is defined to include the
send buffer time as well as the transfer time. However, as mentioned above,
both the send- and receive buffer times are kept as attributes to the activity.
The receive buffer time attribute is needed to compute the time at which a
(progress-) message was actually processed by the worker.

This approach still allows one to detect a potential bottleneck in the sender/re-
ceiver threads. For example, if messages have a high send buffer time but
their transfer time is normal given the message size, this might indicate that

32

4.1. Timely Dataflow’s Runtime Behavior

2.035 2.040 2.045 2.050 2.055 2.060 2.065

time [ms]

0

1

w
o
rk

e
r

(a) Process-local communication

44.38 44.40 44.42 44.44 44.46 44.48 44.50 44.52

time [ms]

0

1

w
o
rk

e
r

(b) Network communication

Figure 4.4: Two 2-worker traces illustrating the differences be-
tween process-local and network communication

many workers are sending messages to the target process and the responsi-
ble sender thread is becoming a bottleneck.

Because worker-local and process-local messages are put into the target’s
input queues directly, their send buffer time will be zero. Also, as already
mentioned in Section 3.2, communication over shared memory is assumed
to be instant (it takes no time on an external system), therefore the transfer

33

4. Critical Path Computation: Preliminaries

time of such activities will also be zero. The time spent actually copying the
message into the queues would be a buffer management activity as per Sec-
tion 3.2, but is currently not tracked in our implementation. This difference
between network- and local messages can be seen in the trace visualizations
shown in Fig. 4.4.

4.2 Instrumentation

One advantage of Timely’s rigid definition of a computation as a dataflow
graph is that it makes it straightforward to insert basic, coarse-grained in-
strumentation. In fact, Timely already has a logging facility as well as static
instrumentation for most of the events we would like to record.

4.2.1 Logging Facility

All events recorded through Timely’s logging facility include a high-precision
timestamp in nanoseconds, which is re-based to resemble a nanosecond-
precision UNIX timestamp, in order to make it comparable across different
machines (see also Section 4.3.1 on how clock skew is handled). Also, as
each worker creates a separate stream of log events4, the originating worker
ID is also known for each recorded event. The events are first kept in a buffer
by Timely, which is flushed at the end of every step of the computation (after
the root scope was scheduled once). Currently, the logs are written to disk,
however, the logging backend can be changed easily such that logs could
also be sent over a socket, for example.

A similar, but slightly simpler logging facility was implemented as part of
this work in order to log communication events, as those must be recorded
on a different layer of the software in which Timely’s logging facility is not
available.

4.2.2 Recorded Trace Events

When Timely’s logging is enabled, it already records the following events:

ScheduleEvent. These events are recorded whenever an operator (or sub-
graph) started running or stopped. A ScheduleEvent includes a worker-
local operator identifier. When a ScheduleEvent designates the stopping
of an operator, it also includes a flag indicating whether or not the operator
seemed to have performed any useful work, i.e. produced/consumed any
messages or requested/received any progress notifications.

MessagesEvent. This type of event is recorded whenever a data message
is either created and put into a message queue (“send” event) or when one

4In fact, each worker creates a separate stream for each log event type.

34

4.2. Instrumentation

is read thereof (“receive” event). It includes an ID of the dataflow channel
over which the message was sent, the source- and target workers (can be
identical for worker-local messages), the number of records contained in the
message, as well as a sequence number.

Receive events can only occur during the execution of the receiving operator.
Send events usually only occur during the execution of the sending opera-
tor, with the notable exception of Timely’s Input operator, which allows
the main program to put input data directly into a message queue (i.e. not
during the execution of the Input operator itself).

OperatesEvent. These events denote the creation of any operator dur-
ing the construction of the dataflow graph, which is normally done at the
beginning of a computation. They contain the worker-local identifier of an
operator which can be linked to the one recorded in ScheduleEvents, as
well as the globally unique address of the operator which specifies its posi-
tion in the dataflow graph. The event also contains a descriptive name of
the operator (e.g. “Join” for a join operator).

ChannelsEvent. This type of event is similar to the OperatesEvent,
but specifies the creation of dataflow channels instead. The events contain
a worker-local channel identifier which can be linked to the one recorded in
MessagesEvents, as well as a global scope address, source/target opera-
tors and source/target ports (an operator with multiple in-/output channels
has one in-/output port for each).

For the purposes of this work, we extended the instrumentation to include
the following events:

ProgressEvent. This type of event is recorded whenever a worker either
receives or sends a progress message. Since progress messages are broadcasts
to all workers, there are N receive events for each send event, where N is
the number of workers. Each event includes the source worker ID as well as
a sequence number. Moreover, as progress messages are exchanged for each
scope in the dataflow graph, these events also include a scope address.

Like MessagesEvents, ProgressEvents are recorded when progress
messages are put into/read from a queue. For progress events, this happens
during the time Timely executes its progress tracking protocol. Remember
that the progress tracking protocol is executed by each subgraph after its
child operators have all been scheduled once.

PushProgressEvent. These events are recorded whenever Timely de-
livers new progress updates to an individual operator, as described in Sec-
tion 4.1.2. For example, this will happen immediately after Timely read new
progress messages (after a number of receive-type ProgressEvents) when

35

4. Critical Path Computation: Preliminaries

it applied the contained updates to the operators. For more information
about progress tracking and scheduling, see Section 4.1.2 and Section 4.1.1.

CommunicationEvent. These events are only recorded when a computa-
tion uses multiple processes that communicate over a network. They either
denote the time when a sender thread started to write a particular (progress-
) message to the TCP socket, or when the receiver thread finished reading a
message from the socket. A communication event also contains the source-
and destination worker IDs, as well as a sequence number which can be
linked to the one recorded by the corresponding message- or progress events.
Moreover, each event contains a communication channel identifier, which is
used to uniquely identify the individual channel of the multiplexed TCP
connection between two processes. Note that these identifiers are separate
from the dataflow channel identifiers recorded in message events. If a com-
putation uses network communication, the message- and progress events
will additionally contain the ID of the communication channel used for each
(progress-) message. This makes it possible to link message- or progress
events to their corresponding communication events using the sequence
number, source/target workers, and communication channel identifiers.

ApplicationEvent. These events are simply start/stop events with a
user-defined ID to allow custom, application-specific instrumentation. See
Section 4.3.2 for more information about application-defined activities.

4.3 Trace Preprocessing

This section discusses how the recorded trace events are processed as prepa-
ration for the wait-state analysis and the critical path computation. The log
streams from each worker can be processed in parallel with very little data
exchange, which makes the preprocessing step a highly data-parallel task.

4.3.1 Correcting Clock Skew

As mentioned in Section 4.2, the recorded trace events include a nanosecond-
precision timestamp which is comparable between workers. However, these
timestamps are still based on the local clocks of each physical machine. If
a computation uses multiple processes distributed over multiple physical
machines, the problem of clock skew between the machines arises.

In order to address this issue, we use a small tool to measure the clock skew
between the machines on which the computation will be/was executed. The
tool simply sends out a number of probe requests over UDP to each machine.
The machines reply with a high-precision timestamp. The client measures
the round-trip time the probe took and also records a local timestamp. Using

36

4.3. Trace Preprocessing

the remote and local timestamps as well as the measured round-trip time, it
then computes the clock skew between the two machines. The clock skew is
averaged over all the probes. Tests on a single machine with an artificially
increased network latency on the loopback device have shown that for a
number of 100 probes, the clock skew measurement error is about three
orders of magnitude lower than the network latency even using this simple
approach.

The clock skew measurements are then used to correct the timestamps of the
recorded trace events. The drawback of this solution is that it does assume
the clock skew to be static, which is of course not true in practice. For long-
running computations, clock drift during the computation can therefore still
cause accuracy problems. However, the impact is limited to the decreased
accuracy of (progress-) message transfer times. The timestamps of events
defining the transfer time are the only ones which need to be compared
across machines. Any other communication- or worker-related events are
not affected. Also, waiting states are still detected normally, which means
also the structure of the computed critical path will still be correct.

Although the remaining accuracy issues are deemed to be acceptable, it
would still be beneficial if future versions of Timely Dataflow’s logging in-
frastructure would measure clock drift periodically during the computation
and include this information in the logs (or produce corrected timestamps
directly). Since high network load from the computation might influence
clock skew measurements, maintaining accuracy is difficult if the measure-
ments are performed using a separate tool. Timely’s runtime however could
decide to perform measurements during idle- or low-load phases of the com-
putation to get accurate measurements. Also, a more sophisticated protocol
could be used to provide higher accuracy, an example would be the Preci-
sion Time Protocol (PTP) [7]. For more information about future work, see
Chapter 8.

4.3.2 Constructing Program Activities

By joining the events recorded by Timely’s instrumentation, it is easy to
construct the program activities (as in Section 3.2) of a particular execution
trace. Consecutive ScheduleEvents for the same operator are joined to
form data operation activities. Schedule events of subgraphs, which over-
lap with their child operators, are simply ignored. Send- and receive-type
MessagesEvents are joined based on source/target workers, their chan-
nel, as well as their sequence number. The channel is determined by joining
the worker-local channel ID of the message events with the corresponding
ChannelsEvents, which contain the unique address of the channel. Sim-
ilarly, ProgressEvents are joined based on their scope addresses, source
workers and sequence numbers. If a (progress-) message was sent over

37

4. Critical Path Computation: Preliminaries

Activity Name Formal Type Constructed Using

Operator Data Operation ScheduleEvents,
OperatesEvents

Data Message Communication MessagesEvents,
ChannelsEvents,
CommunicationEvents

Progress Message Communication ProgressEvents,
CommunicationEvents

Application Any worker activity type
ApplicationEventsexcept Waiting/Unknown

Waiting Waiting –
Waiting for Input Waiting for Input –

Unknown Unknown –

Table 4.1: Activity types used for Timely.

the network, it is also joined with the corresponding communication events
based on the communication channel IDs as well as the sequence number.
Since the sender- and receiver threads are not treated as workers, the actual
communication activity is defined from the time the message was put into the
sender queue to the time it was received by the receiver thread. However,
the send- and receive buffer times are retained as extra attributes of the ac-
tivity. If the communication is process-local (or even worker-local), the send
events alone already defines the start- and end timestamps of the resulting
communication activity (remember that the activity has a duration of zero in
this case).

PushProgressEvents do not form actual activities, but are used only as
marker events that help in detecting waiting phases (see Section 5.1).

Furthermore, ApplicationEvents are used to define application-/user-
defined activities. They can be used to achieve a more fine-grained res-
olution, as they take precedence over most other recorded activities. For
example, an operator might itself perform multiple sub-activities which are
of interest, which can be logged individually using ApplicationEvents.
Alternatively, they can also be useful to instrument code which is not ex-
ecuted during root.step(), e.g. code outside the scope of any operator.
An example of this could be code which is responsible for reading input to
feed into the computation, which is typically done by the main program, not
an operator. Application activities using different IDs can also be nested; in
this case, the innermost activity takes precedence. However, the application
must make sure that they are nested properly, i.e. they may not overlap with
the boundary of another activity, including predefined ones.

Finally, Unknown activities are only used as an abstract construct an are
never explicitly created for efficiency reasons.

38

4.3. Trace Preprocessing

The result of the trace preprocessing step can be seen in Fig. 4.4. These pre-
processed traces might be helpful for manual analysis on their own, however,
in order to compute the critical path, one important type of activity is still
missing: the waiting activities. The next chapter describes how our analysis
identifies the waiting phases during the execution based on these traces, and
how the actual critical path algorithm is applied.

39

Chapter 5

Critical Path Computation: Essentials

In the previous chapter, we laid the groundwork for the critical path anal-
ysis of Timely Dataflow. In this chapter, we now focus on the essentials.
Section 5.1 discusses how waiting phases occurring during a worker’s exe-
cution are detected. It also includes a list of assumptions about the behavior
of Timely operators (and the system in general) which are necessary for our
approach to work correctly. Furthermore, it discusses the causal relation-
ships between events in the program’s execution trace which we consider
in our method. Section 5.2 discusses how our implementation relates to the
formal activity graph model. Finally, Section 5.3 describes how the actual
critical path algorithm is applied.

5.1 Identifying Waiting Phases

One of the biggest challenges in finding the critical path for a Timely Dataflow
computation is detecting the waiting phases in a worker’s execution, i.e. pe-
riods of time in which a worker is not doing any useful work. In previous
work, for example by Schulz [36] and Böhme et. al. [13], these waiting phases
could be identified by looking at blocking system/function calls. However,
unlike in many other parallel or distributed systems, worker threads in
Timely never block while waiting for messages. Instead, they are running
constantly. As described in Section 4.1.1, the operators are just scheduled
repeatedly, polling their input queues, essentially busy-waiting until new
messages (or input data from an external system) arrive. The fact that there
are no explicit start- or end points of a waiting phase, as they would be de-
fined if a blocking system call was used, makes detecting them considerably
more difficult. Hence, we define our own method for identifying waiting
phases.

41

5. Critical Path Computation: Essentials

0

1
w
o
rk
e
r

(a) Before the wait-state analysis, showing worker one spinning. The
computation was stepped five times without any operator showing
any activity.

0

1

w
o
rk
e
r

(b) After the wait-state analysis. The waiting activity, shown in gray,
replaces the spinning phase and is terminated by the arrival of a new
data message.

Figure 5.1: Traces before and after the wait-state analysis.

First, we have to define when a worker is considered to be in a waiting state:

Definition 5.1 (Waiting State) A worker is considered to be in a waiting state at
time τ if it is not doing any useful work at time τ and if there is no point in time
τ′ ≥ τ where the worker performs useful work which is directly caused by a prior
event occurring at a time τ′′ ≤ τ.

Intuitively, we consider a worker to be waiting if it will not continue doing
useful work unless a future event triggers it. Such an event can either be the
arrival of a (progress-) message or of input supplied by an external system.
In the former case, the worker would have performed a waiting activity as

42

5.1. Identifying Waiting Phases

defined in our formal model (see Section 3.2). In the latter case, it would
have performed a waiting for input activity.

Useful work is defined as any work which contributes to the progress of the
computation. Effectively, useful work was performed by operators which
have shown activity, i.e. produced/consumed any messages or requested/re-
ceived progress notifications, and by Timely’s runtime/subgraphs when
it processed and/or sent/received progress messages. Additionally, some
work done outside operators by the program, e.g. the reading, preprocess-
ing or generating input, could also be considered useful work. However,
since this part of a program is not automatically instrumented, it is treated
as an unknown activity and is not considered to be useful work by default.
An easy remedy to this is to put any reading/preprocessing/generation of
input into a designated operator. Obviously, useful work is defined with a
certain (relatively coarse) granularity. For instance, it would be very hard
to determine whether every single code instruction executed by an operator
performed useful work; however, it is easy to determine whether the whole
operator performed any useful work.

In practice, accurately detecting the exact points in time when a worker is
waiting as per Definition 5.1 is still a difficult task which requires intimate
knowledge of the program itself. To bypass this challenge, our algorithm
makes a number of assumptions about the behavior of Timely Dataflow pro-
grams and uses a heuristic approach to determine the causal links between
events. All of these assumptions and heuristics are described in detail in the
following sections.

5.1.1 Assumptions about Operators

The following assumptions about operator behavior need to hold true for
the wait-state analysis and the critical path analysis overall to produce cor-
rect results. The assumptions are deemed to be reasonable given Timely’s
programming model, however, in practice developers themselves need to
make sure not to violate them:

Operators do not defer the processing of data messages. If an operator
reads a data message from one of its input queues, it will process the mes-
sage during the same execution of the operator, not store it and process it
when the operator is scheduled again at a later point in time. This assump-
tion is necessary to establish the causality between a message arrival and
any activity that an operator might show (e.g. the production of an output
message).

If the operator would defer the processing of the input message and process
it at a later time, it could not be determined whether it performed useful
work at that later time, if it did not consume any additional message(s) and

43

5. Critical Path Computation: Essentials

did not produce any either. If the operator did produce a message as a
result of the deferred processing, it must be assumed that it generated that
message on its own (or based on external input it read).

Note that this assumption only applies to cases in which the message is
the sole cause of the activity. It does does not exclude the possibility of
an operator storing the message (or modifying its local state based on the
message in another way) and deferring its processing until another message
or notification arrives. This behavior poses no problem, as in this case, the
second message/notification can be seen as the direct cause of any useful
work being done.

This assumption cannot be guaranteed by Timely’s runtime, however, it is
not unreasonable to expect operators to behave this way, given that deferring
the processing of messages would only harm the overall performance of the
computation in almost every case imaginable.

Operators do not defer their reaction to new progress information. This
assumption is very similar to the previous one. Whenever a subgraph
pushes new progress information onto the operator, which is reflected by
a PushProgressEvent in the trace (see Section 4.2), it does not defer its
reaction to the resulting notifications to a later time, when it is being sched-
uled again. This assumption is needed to establish the causality between the
arrival of new progress information for an operator and any useful work an
operator might perform as a result.

Again, this assumption does not exclude the possibility that an operator
modifies its local state based on newly available progress information and
then defers any further processing until a new message or more progress
information arrives.

Operators only interact with operators on different workers through the
mechanisms provided by Timely Dataflow. Operators can only interact
with operators on other workers through data messages and indirectly through
Timely’s progress tracking. This assumption might seem a bit obvious, how-
ever it is important to note that all interactions need to be captured by the
existing instrumentation for the critical path algorithm to work.

Operators running on the same worker do not share any state. Even if oper-
ators on the same workers interact, they need to do so by sending data mes-
sages to each other. Again, this might seem obvious given Timely Dataflow’s
programming model. Yet, Timely’s runtime does not enforce this rule. In
fact, it is very easy (and one might say tempting) to share state between
operators on the same worker to avoid the overhead of exchanging data
messages.

44

5.1. Identifying Waiting Phases

The fundamental problem with sharing state is that the interaction between
the operators is not observable in the trace data. Just like when an opera-
tor deferred the processing of a message, the cause of an operator’s activity
when reacting to a change in a shared state is hidden and cannot be deter-
mined, as the state-sharing is not recorded by any instrumentation.

There is a remedy which still allows some operators on the same worker to
profit from the performance benefits of state-sharing, without affecting the
critical path computation. If two operators share a state, whenever one of
them modifies the state, it also needs to send an (empty) signal message to
the other operator, indicating that the state has changed. The signal message
needs to be sent during the same operator execution in which the state was
modified. When the other operator is scheduled, it can react to the reception
of the signal message by accessing the shared state. Because the operators
are both running on the same worker and are executed strictly sequentially,
when following this pattern there is no possibility that one of them reacts to
a state modification before the arrival of the signal message indicating the
change. Thus, the signal message, which will be visible in the trace, can be
seen as the direct cause of any useful work performed by the receiving oper-
ator. Conceptually, one could also imagine that the signal message contains,
and hence, transfers the entire shared state from one operator to the other.
Looking at the situation this way, the two operators would still be acting in
conformity with the actor model [23].

There already exist operators which make use of this pattern, an example
being the ArrangeByKey operator in Differential Dataflow [4].

5.1.2 Causal Relationships between Events/Activities

The generality of Timely’s programming model makes determining the ex-
act causes of an operator’s behavior a task which is impossible to fulfill
accurately without additional knowledge about the implementation of said
operator. For instance, let us assume that an operator has seen new progress
information and has also received a message. Now, without having any ad-
ditional information available, we cannot determine what percentage of the
operator’s execution time was spent processing the message, and what per-
centage (if any) was spent processing a potential progress notification. Any
progress the operator makes could be the result of either the message or the
progress information, or a combination of both. Nevertheless, we can still
conclude that the arrival of the data message was at least partially responsi-
ble for the operator’s progress, since we know the message was consumed.
Thus, the message is deemed to be a direct cause of the operator’s activ-
ity, even though it might only be partially responsible. Data- or progress
messages which were already read/processed earlier could potentially be
indirect causes. However, the worker can still be waiting for the direct cause

45

5. Critical Path Computation: Essentials

of some activity after an event which denotes an indirect cause occurred.
Therefore, we must not consider indirect causes of activity when identifying
waiting phases.

As mentioned before, we consider two types of useful work (which advance
the computation): operator activity or progress tracking activity. Note that
“activity” as used in this section does not denote program activities, but useful
work being performed. Progress tracking activity is meant to denote any
computation performed by Timely’s progress tracking implementation, e.g.
the reading and processing of a progress message. The rest of this section
describes the heuristics used to determine all direct causes of any useful work
being performed, which are needed to detect whether or not a worker is in
a waiting state at a given time, according to Definition 5.1.

Causes of Operator Activity

The following events are deemed to be direct causes of an operator showing
activity (i.e. making progress). Note that multiple direct causes can apply at
the same time:

The arrival of a data message destined to the operator. The arrival of
a data message in an operator’s input queue is guaranteed to be at least
a partial cause of the destination operator’s activity during the particular
operator execution during which the message was read from the queue. If
the message arrived before the operator was scheduled, it is always treated
as a direct cause. If it arrived during the operator’s execution, but was read
from the queue only when the operator was scheduled again at a later time,
it is treated as the cause of any activity during the later scheduling. If the
message arrived after the operator already started running but was read
during the same execution however, it is not treated as a direct cause, as an
earlier event might already have triggered the operator’s activity. In case
a message arrives just in time when an operator is running which would
otherwise not have performed useful work, this heuristic is inaccurate. Note
that such a scenario is highly unlikely to happen, since operators which do
not perform useful work are usually only scheduled for a tiny period of
time.

In other words, this means that as long as a data message buffered in an
input queue of an operator, the worker cannot be in a waiting state according
to Definition 5.1, as there must come a time in the future when said message
is read and processed by the operator, which is useful work directly caused
by the arrival of the message.

The processing of new progress messages or the pushing of new progress
information onto any operator. Determining whether or not an operator

46

5.1. Identifying Waiting Phases

1

2

Figure 5.2: The arrival of a data message at 1 is treated as the
direct cause of the operator activity beginning at 2 (remember
that lighter colors indicate operators which have not shown ac-
tivity). The message is read from the input queue during the
same execution of the operator.

reacted to new progress information would require knowledge of the oper-
ator’s implementation as well the content of each individual progress up-
date. The latter could be recorded by appropriate instrumentation and the
analysis could replay the whole progress tracking protocol, although this
would likely substantially harm the performance of both the original compu-
tation (due to instrumentation overhead) as well as the analysis. The former
however is unrealistic given the generality of Timely’s programming model.
Therefore, our heuristic assumes that any time an operator has shown activ-
ity after Timely has either read a new progress message or pushed progress
information onto any operator, this activity is directly caused by the newly
available progress information.

This heuristic is inaccurate in cases where progress information was received
and an operator also received a data message, but did react only to the data
message, not the progress information. It is also inaccurate in cases where
progress information was received but an operator became active because it
generated/read input data.

The availability of external input or the generation of input. If neither of
the previous two causes are present to explain an operator’s activity, our
heuristic approach assumes that the operator in question must have read
input from an external, unobserved system, or alternatively, generated input
itself. As the precise cause cannot be observed in this case because of the
lack of instrumentation, it is assumed that the triggering event (i.e. the new
input data becoming available) happened exactly at the time the operator
started running.

47

5. Critical Path Computation: Essentials

Causes of Progress Tracking Activity

Progress tracking activity means the processing of progress updates and
the sending/receiving of progress messages. This work is performed by
Timely’s progress tracking implementation. The following events are deemed
to be direct causes of progress tracking activity (again, multiple causes may
apply simultaneously):

The arrival of progress messages. Just as the arrival of data messages for an
operator, the arrival of progress messages for a particular subgraph causes
the subgraph’s progress tracking logic to perform useful work at the time
the progress message is read from the queue. There is no ambiguity in this
case.

1 2 3 3 5

Figure 5.3: The arrival of a progress message at 1 causes
progress tracking activity at 2 . This progress tracking activity
in turn causes operators to become active at 3 and 5 . Further-
more, at 3 a message is sent, which is also a cause for operator
activity at 5 .

The reading a progress message from a queue. This is assumed to be
the cause of any following PushProgressEvents, i.e. the application of
progress information to an operator. The latest progress message which was
read is assumed to be the cause for the next PushProgressEvent.

This heuristic is incorrect in two ways: first, if multiple progress messages
were read, any of them (also a combination) could be the cause. Second, the
cause of a particular PushProgressEvent could also be an outer subgraph
which pushed new progress onto an inner subgraph in the previous step, as
described in Section 4.1.2.

The first case does not affect the results of the wait-state analysis. The worker
would not be in a waiting state no matter which exact progress message(s)

48

5.1. Identifying Waiting Phases

were responsible for the PushProgressEvent, as until the last progress
message was read from the queue there would be at least one progress
message buffered. This negates the possibility of a waiting state during
that time.

The second case can lead to incorrect results if a progress message was read
immediately prior to a PushProgressEvent, but the event was caused
by new progress information from the outer subgraph (delayed pushing of
progress information, as can bee seen in Fig. 4.2). In this case, the progress
message is erroneously assumed to be the causal factor, which could lead
to a waiting state being detected (again erroneously) before the arrival of
the progress message. This issue could be solved by using a more detailed
model of the progress tracking logic and by the replaying of the content of
progress updates, as described in Chapter 8.

The pushing of progress information onto operators. In addition to being
a cause of operator activity (see previous section), these events are also as-
sumed to be a direct cause of any future events of the same kind if no new
progress messages were read in between. This heuristic only applies in the
case of delayed PushProgressEvents as shown in Fig. 4.2, and does not
cause any errors.

Active operators. An operator which made progress (showed activity) is
assumed to be a direct cause for any progress messages being sent by the
worker until the same operator is scheduled again. In other words, the
worker cannot be in a waiting state after an operator was active until all
progress messages which are assumed to be caused by the operator’s activity
have been sent.

5.1.3 Wait-State Analysis Algorithm

By combining the knowledge of Timely’s runtime behavior, particularly its
static scheduling algorithm, together with the assumptions about operators
and the heuristics to determine causal relationships, we can now define an
algorithm to detect any waiting phases during a worker’s execution history.

The algorithm processes the output of the preprocessing step described in
Section 4.3, which is a stream of ordered program activities. Grouped by
worker, this stream is processed sequentially. For each worker program ac-
tivity, the algorithm checks whether the worker was in a waiting state during
the execution of the activity. By Definition 5.1, this can only be if the activity
did not perform useful work and if no direct cause for future useful work
has already been observed in the stream prior to the activity in question.
The latter part is tested by applying the cause/effect heuristics described
in Section 5.1.2. Once a waiting state is detected, its starting timestamp is

49

5. Critical Path Computation: Essentials

noted. Then, any program activities that occur and do not terminate the
waiting state are discarded. Finally, if an activity causes the waiting state to
be terminated, a waiting or waiting for input activity from the noted starting
point to the time the waiting state was terminated is inserted into the stream,
replacing all the discarded activities.

The conditions which need to be checked for each activity timestamp in the
stream can be summarized as follows:

• Is an operator active?

• Are any (progress-) messages buffered?

• Do operators become active in the future as a result of current or past
progress tracking activity?

• Does the progress tracking logic become active in the future as a result
of current or past activities?

If any of these conditions apply, the worker is not waiting at the checked
time. The first condition is obvious: if an operator is active, it is performing
useful work, hence the worker cannot be waiting. Checking this condition
is straightforward.

The second condition covers all the cause/effect heuristics in which the ar-
rival of a (progress-) message is the direct cause of any progress tracking/-
operator activity. If a cause/effect pair covers the checked timestamp, the
worker cannot be waiting at that time according to our definition. From
its arrival time until it is read, the message is buffered, hence the simple
condition to check. Keep in mind that communication activities (progress-
and data messages) occur in the stream at the time they arrived in the
target buffer. Thus, when the algorithm sees a communication activity, it
also knows when the corresponding (progress-) message will be read by the
worker, since this can be computed from an extra attribute of the communi-
cation activity, the receive buffer time. Therefore, the algorithm knows exactly
for which period of time (progress-) messages are buffered.

The third condition covers the cause/effect heuristic which says that opera-
tors can become active as a result of newly available progress information.
As we assume that operators do not defer their reaction to progress informa-
tion, the algorithm only has to look ahead in the stream until the time every
operator has been executed again to check whether any operator has shown
activity after new progress information was read/pushed onto it. If this
is the case, the worker cannot have been waiting until after the operator in
question was executed. The lookahead is implemented by keeping a sliding
window over the next executions of every operator in the computation.

The last condition is similar, but is concerned with progress tracking activ-
ity instead of operator activity. By looking at the possible causes of progress

50

5.1. Identifying Waiting Phases

tracking activity listed in Section 5.1.2, we first observe that any such cause
occurs at maximum one step of the computation earlier than its effect. In
order to check the last condition, we thus also only have to look ahead in
the trace until we have seen the execution of every operator in the compu-
tation once. Therefore, the sliding window mentioned above is sufficient to
check the last condition as well. The condition is checked by testing whether
the current program activity is responsible for any future progress tracking
activity in the sliding window by applying the heuristics from Section 5.1.2.

Insertion of Waiting Activities

As mentioned above, whenever the termination of a waiting state is detected,
a corresponding activity is created and put in place of all the discarded
activities which occurred during the waiting phase. The type of this activity
is determined by the type of activity which terminated the waiting phase. As
described in the formal model, specifically Section 3.2, there are two types
of waiting activities: waiting and waiting for input. As per definition, the wait-
state analysis inserts a waiting activity if the waiting phase was terminated
by the arrival of a communication activity, i.e. a progress/data message.

(a) Trace before the wait-state analysis. The yellow operator seems to
become active with no observable cause after a spinning phase.

(b) A waiting for input activity replaces the spinning phase. The as-
sumption is that the yellow operator must have read/generated input
data.

Figure 5.4: The detection of a waiting for input activity.

51

5. Critical Path Computation: Essentials

On the other hand, it inserts a waiting for input activity if the waiting phase
was terminated by an active operator, whose cause of activity could not be
observed. In this case, the wait-state analysis simply assumes that the oper-
ator read external input from an unobserved source, and during the waiting
phase this source was not ready to supply input yet, hence the waiting phase.
This is illustrated in Fig. 5.4.

5.2 Activity Graph

After the preprocessing of the logs and the wait-state analysis, the result-
ing trace contains all the necessary information to form the activity graph
as defined in Definition 3.3. However, to apply the critical path algorithm
from the formal model, it is not actually necessary to explicitly transform
the whole trace into an activity graph. Instead, the algorithm can be ap-
plied directly, with necessary changes to the trace being performed on the
fly. Apart from reducing the overall computational complexity, this has the
advantage that additional information, such as the receive buffer time of
communication activities, is retained. It also allows for simple, easy to un-
derstand visualizations which do not have to be graph-based.

Figure 5.5 shows how an activity graph, in theory, would be constructed
from an execution trace. The main difference between the activity graph
view and trace view is that worker activities must be split at each event —
such as at the arrival of a message — in the activity graph (otherwise it
would not form a proper graph). Furthermore, worker-local messages do
not need to be represented in the activity graph, since they are not consid-
ered to be communication activities in our formal model. Finally, unknown
activities need to be explicitly represented such that each stream of worker
activities forms a connected subgraph.

5.2.1 Trace Slicing

The trace can now be split into slices (snapshots) of a given duration. The
slicing process itself is straightforward: any activities overlapping the slice
boundaries are simply split into two parts. This is equivalent to applying
the edge projection from Definition 3.4, and the resulting slices correspond
to the activity graph snapshots in the formal model. One can of course
also compute the critical path for the whole trace instead of slicing it into
smaller snapshots, however, doing so is only possible if the entire trace is
small enough to fit into the memory of the machine performing the critical
path analysis.

52

5.2. Activity Graph

0

1

w
o
rk
e
r

(a) Execution trace

0

1

w
o
rk
e
r

waiting unknown OP1

u.

OP2

communication (weight = 0)

OP1 OP1 u. OP2 u. OP3

(b) Corresponding activity graph. The length of each edge corresponds
to its weight, except for the communication activity. Note that the
green data operation activity (OP1), has been split at a message send
event. Also note that worker-local messages and the buffering times of
messages are not visible in this view.

Figure 5.5: Differences between trace view and activity graph
view.

53

5. Critical Path Computation: Essentials

5.3 Critical Path Computation

time

0

1

w
o
rk
e
r

(a) Trace excerpt after the wait-state analysis, before the critical path
algorithm was executed.

time

0

1

w
o
rk
e
r

(b) Trace excerpt showing the computed critical path (marked in red).

Figure 5.6: Illustration of the critical path computation for a
small trace excerpt. The traces show the Differential Dataflow-
based BFS implementation running on two worker threads in
the same process.

In this section we discuss how the critical path algorithm from our model in
Section 3.4 is applied to Timely Dataflow computations. Because the formal
algorithm operates on an activity graph, which is not explicitly constructed
in our implementation, the algorithm needs to be modified slightly. As
discussed in Section 5.2, to construct a proper activity graph, the worker
activities would need to be split at any communication events, worker-local
messages would need to be removed and empty gaps between worker ac-
tivities would need to be filled with unknown activities. It is clear where
exactly unknown activities are in the trace, so they do not need to be added
to the stream of activities even now — they can just be added by filling
any gaps between activities of the critical path when actually needed, e.g.

54

5.3. Critical Path Computation

when computing a critical path profile per activity type. Worker-local mes-
sages are simply ignored entirely by the algorithm. Finally, worker activities
only need to be split when they are just partially on the critical path. Oth-
erwise, leaving them as single activities does not make a difference for our
purposes. Thus, if the critical path follows along a communication activity
whose start/end occurs during a worker activity, the worker activity is split
on the fly by the algorithm and only the relevant part is added to the critical
path. Any other worker activities are left untouched.

These slight modifications make the computation of the critical path more ef-
ficient, as less activities need to be represented. Inserting unknown activities
would roughly double the number of worker activities in the trace given that
our instrumentation does not cover every bit of code Timely executes, and
there are tiny gaps between almost any two consecutively recorded worker
activities. Furthermore, note that most of the example traces shown in this
work were taken from computations with small input data sets (e.g. a BFS
computation on a graph with a thousand nodes) and few active workers,
in order to keep the illustrations simple and uncluttered. In more realistic
computations with large input datasets and many workers, an operator can
potentially send hundreds of messages per execution, which would require
splitting the corresponding data operation activity into hundreds of parts, all
containing similar information about the operator. Thus, these modifications
were made mostly to make the analysis more efficient, to reach the goal of
being able to find the critical path close to real-time.

Figure 5.6b shows an excerpt of the critical path (marked in red) of a Timely
Dataflow computation. In this example, the algorithm started on worker one
(remember that it processes the trace backwards), added all worker activi-
ties to the critical path until it encountered a waiting activity (gray), which
can never be part of the critical path. At that point, as explained in our
model, the algorithm’s Ecritical set contains only the communication activity,
a progress message in this case, which terminated the waiting state. There-
fore, the computed critical path includes this communication activity. The
algorithm then continues to add all worker activities on the source worker of
said communication activity (worker zero) until the start of the trace. Note
that worker-local messages are not marked in red, as they are ignored and
not considered part of the critical path, as described above. Further note that
the time a message/progress update spent in one of the receiving worker’s
buffers is not part of the corresponding communication activity’s duration,
as described in Section 4.3.2 and 4.1.3. Thus, this receive buffer time is also
never part of the critical path.

55

5. Critical Path Computation: Essentials

time

0

1
w
o
rk
e
r

(a) Trace excerpt after the wait-state analysis, before the critical path
algorithm was executed.

time

0

1

w
o
rk
e
r

(b) Trace excerpt showing the computed critical path (marked in red).

Figure 5.7: Critical path computation for a small trace excerpt.
The traces show the Differential Dataflow-based BFS implemen-
tation running on two machines, with network communication.

A different example, shown in Fig. 5.7, shows the same computation but
executed using two separate processes which are communicating over a net-
work. This example demonstrates how two workers can be waiting at the
same time while messages are being transferred over the network. Note also
that the workers can be waiting during the time a message is still in a send
buffer. This is no mistake; keep in mind that the messages are being sent
by dedicated sender threads — the worker thread itself can thus already be
waiting at the time a message is actually written to a network socket by the
sender thread. Further note that this example also illustrates how activities
are split during the critical path computation, as can be seen on worker one
when the critical path follows along a communication activity. The worker
activity during which the message in question was sent is split at the point
in time when the message was put into the sender queue, as only the part
of the activity prior to this event belongs to the critical path.

56

5.3. Critical Path Computation

5.3.1 Preference for Worker Activities

One additional modification of the algorithm described in Section 3.4 we im-
plemented is that only communication activities which terminated waiting
activities are ever added to the critical path. In other words, if the algorithm
encounters the arrival of a communication activity, but said communication
activity arrived not during a time in which Timely was waiting (spinning),
but for example during the time an operator did useful work, then it will
never be on the critical path. The reason is that such a message spent some
time in a receive buffer until it was actually read. Thus, a delayed message
arrival would only decrease the time it spent in the buffer and not increase
the overall runtime of the computation, unless the delay was longer than the
message’s receive buffer time. This observation, originally made by Schulz
[36], means that any such communication activity should not be on the crit-
ical path.

Therefore, our algorithm preferably adds worker activities to the critical
path instead of communication activities, unless there is no other choice
(which happens when a waiting activity is encountered). This is visible
in Fig. 5.7, where the algorithm ignores an arriving progress message on
worker zero, and instead is following the worker activities until it encoun-
ters a data message which actually terminated a waiting state. Note that
this approach never produces provably wrong results given the level of in-
strumentation we use, even in the unlikely case of a message with a zero
receive buffer time, i.e. a message which was read immediately after its ar-
rival. Such a case would be ambiguous, as the worker activity immediately
following the message arrival could depend both on the message as well as
the previous worker activity. However, in the absence of additional informa-
tion, always following the worker activities by default in such cases is never
incorrect.

Further note that because Timely does not block while waiting for messages
to arrive and instead is spinning and polling all the message queues, even
messages which terminated waiting states do have an above-zero receive
buffer time, as they arrived in a queue some time before said queue was
polled again. However, keep in mind that the communication activity’s end
point is at the time of its arrival, not the time it was read from the queue.
Therefore, any remaining spinning the worker does until the message is read
is part of the critical path, which is the most accurate way of modeling this
behavior. If the duration of the remaining spinning phase would be reduced
— e.g. using a scheduler which immediately schedules the operator which
received the message — the overall runtime would improve, which is why
it should on the critical path.

57

Chapter 6

Implementation

A critical path analysis prototype for Timely Dataflow computations was
implemented as part of this work. Since much of the analysis is concerned
with processing separate streams of instrumentation log events created by
the workers of the reference computation, most of the workload is highly
data-parallel. In order to make use of this inherent data-parallelism, the
analysis itself was also implemented as a Timely Dataflow computation.

Reference
Computation

(Timely Instance)

N workers

TCP/IP
network

Event
Logs

Performance
Analysis

(Timely Instance)

M workers

Automatic Result
Exploitation

(e.g. Scheduling
Optimizations)

Trace
Visualization

Critical Path,
Trace

Figure 6.1: System architecture. Note that the trace- and critical
path data is currently stored to disk for the visualization.

Figure 6.1 shows the architecture of the complete system. The N workers
of the reference computation feed the event logs created by the instrumen-
tation directly into a distinct Timely Dataflow computation which runs the
performance analysis live in (near) real-time. The performance analysis can
run on a different machine than the reference computation and receive the

59

6. Implementation

logs over a network. As the parallelization of the performance analysis re-
lies on the fact that event streams from different workers can be processed
largely in parallel, it can make use of up to N workers as well (M ≤ N).
The results of the performance analysis for a particular trace slice can then
be exploited directly, for example to optimize operator scheduling in the
reference computation. Furthermore, the results can also be stored to disk
for later (manual) analysis, e.g. using the visualization tool described in Sec-
tion 6.2.

While the prototype is capable of doing the critical path analysis in real-time
or near real-time (depending on the characteristics of the original computa-
tion), Timely Dataflow’s logging facility is not yet capable of sending logs
directly over the network, which is why the prototype needs to read the logs
from disk1. The automatic exploitation of results is part of future work.

Performance Analysis Computation
(Timely Dataflow)

Real-Time
Critical Path Analysis

Further Trace
Analysis
(e.g. com-

putation of
slack, other

metrics)

Clock Skew
Correction

Preprocessing

Wait-State
Analysis

Injection of
Application

Activities

Slicing

Critical Path
Computation

Clock Skew
Deltas

Event Logs

Critical Path,
Trace Slice

Additional
Output

Figure 6.2: Simplified dataflow graph of the performance analy-
sis computation.

1Of course it is possible to read/write the traces from/to network storage.

60

6.1. Stages of the Critical Path Analysis

A coarse overview over the stages in the performance analysis can be seen
in Fig. 6.2. The red section marks the critical path analysis which was imple-
mented in this work. The green section indicates that any future additions
to this work, like the computation of additional metrics based on the critical
path or the trace in general, can be plugged in easily into the computation
as a result of implementing the analysis as a Timely computation. Such
downstream operators can make use of any of the intermediate results of
the critical path analysis.

6.1 Stages of the Critical Path Analysis

Conceptually, the different stages of the computation are already described
in Chapter 4 and Chapter 5. This section focuses purely on implementa-
tion details. Overall, the implementation is focused on performance, and
therefore tries to minimize the amount of data which needs to be exchanged
between workers. It also avoids sorting/re-ordering the log events (and later
activities), instead making use of the fact that the workers of the reference
computation are producing log events with monotonically increasing times-
tamps already. Most of the operators take care to not disturb this ordering
on a per-worker basis.

The first stage corrects the clock skew of all the logs received. The assumption
is that on each machine of the reference computation, only one Timely pro-
cess is running (which is the best configuration to maximize performance).
Therefore, the user has to supply the clock skew deltas for each process
measured using the tool described in Section 4.3.1. The advantage of im-
plementing clock skew correction as a Timely operator is that it can be eas-
ily distributed, even if multiple workers are receiving event logs and clock
skew information. However, it also makes it difficult to associate log events
to Timely epochs based on their timestamps, as the accurate timestamp of
a log event is not known at the time it is supplied to the computation, but
only at a later stage in the dataflow graph2. If the reference computation
only consists of one process (with multiple worker threads), the clock skew
correction stage is omitted.

The preprocessing stage handles the creation of program activities from the
raw log events. This mostly involves a series of join-like operators for the
different types of log events (see Section 4.2). At the end of this stage, the
various streams of different types of program activities are merged, in order,
into a single stream of program activities partitioned by worker ID. Grouped

2Note that putting each event into a separate Timely epoch would be infeasible anyway,
as early tests have shown that this would lead to a prohibitively large increase in the cost
of Timely’s progress tracking. However, a more coarse-grained approach would still be
possible.

61

6. Implementation

by worker ID, each sub-stream consists of program activities sorted by their
end timestamp. Communication activities are associated to the sub-stream
based on the worker ID of their destination worker, hence they will appear
in the destination worker’s sub-stream at the time they were received.

The wait-state analysis operates on individual, per-worker sub-streams as de-
scribed above, and is therefore completely parallelized. As the communi-
cation activities appear at the point they were received in the per-worker
sub-stream, it can detect the termination of waiting states easily, without ex-
changing any data. As the wait-state analysis needs to buffer some activities
to be able to look ahead in the stream, it introduces a slight delay. Also,
waiting activities are only inserted when the wait-state analysis has seen the
activity terminating it (e.g. a communication activity or an active operator),
which can introduce an additional delay equal to the duration of the waiting
activity.

Optionally, if the reference computation includes application-defined instru-
mentation, the application-defined activities, which are also created in the
preprocessing stage, are injected into the stream of program activities after
the wait-state analysis. As application activities can be used to provide more
precise performance data, e.g. about different parts of an operator, they take
precedence over any other worker activity type excluding waiting activities.
This means that if a worker activity overlaps with an application activity, the
part of the worker activity which is covered is replaced by the application
activity. The same process is also applied for nested application activities; in
this case, activities with a higher nesting level take precedence. The reason
application activities are injected into the stream at this stage, and not up-
stream in the computation, is because the wait-state analysis relies on certain
characteristics of the activity stream which are based on Timely’s runtime
behavior. For example, it needs the complete data operation activities denot-
ing the operator executions. If application activities were injected earlier, it
could be that such an operator execution is not observable in the stream
anymore if an application activity happens to cover it.

The slicing stage does exactly what its name suggests: it splits the stream of
activities to form slices, on which the critical path algorithm can then be run.
This allows partial results to be provided in near real-time, while the refer-
ence computation is still running (remember that the critical path algorithm
needs to start from the end of a trace slice, thus it can only be executed after
the slice is available completely). It also computes the minimum timestamp
in each slice and subtracts it from all timestamps in the slice. This stage is
currently not parallelized in our prototype, and might be a bottleneck of the
whole computation.

The final stage runs the critical path algorithm on an individual slice. As
the backtracking-style critical path algorithm cannot be easily parallelized,

62

6.2. Visualization

the partitioning in this stage is done by slice number, i.e. each slice is as-
signed to a different worker. The computation of a critical path for a specific
slice is therefore done by only one worker. However, keep in mind that the
backtracking algorithm directly follows along the edges of the critical path,
therefore the performance does only depend on the number of activities on
the critical path (which is bounded by the maximum number of events for
a worker), not the total number of activities in the trace. Thus, computa-
tionally the algorithm scales well as the number of workers are increased.
The drawback is that the entire slice needs to fit into the memory of a single
machine, which limits the maximum slice size for very large-scale computa-
tions.

6.2 Visualization

To facilitate the analysis of the results of a critical path analysis, an interac-
tive trace visualization tool was also developed as part of this work. It allows
the inspection of both raw traces (which were not modified by the wait-state
analysis) as well as the post-analysis traces which include waiting activities
as well as the complete critical path. Furthermore, it can also be used to
inspect the details of all activities in the trace, including extra attributes of
certain activities, such as the send/receive buffer time of messages.

The web-based visualization was implemented using JavaScript and the
Data-Driven Documents (D3.js) [3] library. The trace view is based on Scal-
able Vector Graphics (SVG), which adds the benefit of being able to export
trace visualizations in a standardized vector graphics format. As SVG is
natively supported by the browser itself, zooming in on the the trace is very
efficient. The visualization tool is purely client-side, i.e. it does not require
a server component to run.

In order to visualize a trace, the Timely-based analysis program can be in-
structed to write the trace output to disk as one JSON file per slice, which
can then be loaded into the visualization tool.

Screenshots of the visualization tool are depicted in Fig. 6.3 and Fig. 6.4.

63

6.
I
m

p
l
e
m

e
n

t
a

t
i
o

n

Figure 6.3: Screenshot of the interactive trace visualization tool. The critical activities are marked with a red
border.

64

6.2.
V

isualization

Figure 6.4: View of the complete critical path of a Differential Dataflow-based BFS computation, as depicted by
the visualization tool. Notice the graph generation phase at the beginning on worker zero (up to about 12ms).

65

Chapter 7

Evaluation

In this chapter, we evaluate both the performance of the critical path analysis
itself as well as the usefulness of its results to find bottlenecks in Timely
computations. All the experiments were run on a single machine with four
octa-core 2.4GHz Intel Xeon E5-4640 processors (32 CPU cores in total) and
500GB of memory.

Section 7.1 discusses the overhead of Timely’s instrumentation for two dif-
ferent kinds of computations. In Section 7.2, we analyze the performance
and scalability of the critical path analysis itself and demonstrate that its
throughput is large enough to be able to compute the critical path in real-
time in certain configurations. Finally, we discuss how critical path analysis
can be used to find the factors limiting the performance and scalability of a
Differential Dataflow computation in Section 7.3.

7.1 Overhead of Instrumentation

We measured the overhead of the event logging for two reference computa-
tions with different characteristics. The first computation, the Differential
Dataflow-based BFS implementation (see Fig. 2.3), is a fast-stepping com-
putation whose dataflow graph consists of 18 operators. The operators are
mostly “thin” operators, i.e. operators which do not keep running for a long
time. The computation needs to be stepped often (many executions of each
operator) for the computation to make progress, as the operators need to be
able to exchange data with each other.

The second computation is the Timely-based BFS implementation (see Fig. 2.1).
Computations based on pure Timely Dataflow tend to contain more “fat”
operators with very specific purposes. In this case, the computation only
consists of 5 operators. The computation does not need to be stepped as

67

7. Evaluation

often, as most of the work is done by just a handful of operators (mostly by
the “BFS” operator itself). Thus, it is a more slow-stepping computation.

Both computations were run on random graphs with 5 million nodes and
50 million edges. As a baseline, they were run with disabled instrumenta-
tion/logging. This run was compared to runs with full-fledged instrumen-
tation using three different logging facility configurations. The first configu-
ration uses the standard logging facility which flushes the log buffer to disk
after every step of the computation. Additionally, we tested a configuration
in which the log buffer is only flushed at the end of the computation (sin-
gle flush). Finally, we tested a configuration in which the log data is kept
in memory and never written to disk, to measure the overhead of only the
tracepoints themselves. Obviously, the last two configurations are not fea-
sible for long-running computations as they cause the memory to be filled
up. However, the results give an indication of how much a smarter logging
architecture could reduce the overhead.

We expect the instrumentation overhead for the fast-stepping computation
to be larger than for the slow-stepping one. The reason is that the fast-
stepping computation generates more log events in a given period of time,
as there are more operator executions. Moreover, as the dataflow graph
contains more operators and more channels, we expect a higher number of
messages being exchanged, which also adds overhead. Also, we expect that
the log flush at every step will be delaying the fast-stepping computation by
a larger degree, as it needs to perform more steps in order to make progress.
Finally, we expect that the overhead will get larger with more workers in the
computation, as more log events will be generated in a shorter time, and as
result the disk to which the logs are written will become a bottleneck.

7.1.1 Results and Discussion

Figure 7.1 shows the results for the fast-stepping computation (Differential-
BFS). Each data point shows a mean over 50 experiments. The error bars
indicate the sample standard deviation. Clearly, the standard full-fledged
instrumentation with a log flush after every step has the highest overhead.
Comparatively, the single log flush at the end of the computation is more
efficient. Note however that this method also has the drawback that more log
events are generated in total, since workers which are spinning constantly
generate log events, and the spinning rate (and thus the log event rate) is
not limited by the disk throughput. The tracepoints only, without I/O, have
a negligible (1-2.5%) overhead on 2-8 workers. On 16 workers, the overhead
increases to 20%. One possible explanation for this increase could be that
memory management becomes a bottleneck at this point, given that the
log buffers are growing very quickly with so many workers generating log
events.

68

7.1. Overhead of Instrumentation

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

2 4 8 16

R
u

n
ti
m

e
 [

s
]

Number of Workers

None
Full-fledged
Single flush
Tracepoints only

(a) Runtime of different instru-
mentation configurations. Error
bars depict the sample standard
deviation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 4 8 16

O
v
e

rh
e

a
d

 [
%

]

Number of Workers

Full-fledged
Single flush
Tracepoints only

(b) Overhead compared to base-
line computation without instru-
mentation/logging.

Figure 7.1: Instrumentation overhead for the fast-stepping com-
putation (Differential-BFS).

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2 4 8 16

R
u

n
ti
m

e
 [

s
]

Number of Workers

None
Full-fledged
Single flush

Tracepoints only

(a) Runtime of different instru-
mentation configurations. Error
bars depict the sample standard
deviation.

 0

 10

 20

 30

 40

 50

 60

2 4 8 16

O
v
e

rh
e

a
d

 [
%

]

Number of Workers

Full-fledged
Single flush
Tracepoints only

(b) Overhead compared to base-
line computation without instru-
mentation/logging.

Figure 7.2: Instrumentation overhead for the slow-stepping com-
putation with “fat” operators (Timely-BFS).

69

7. Evaluation

Figure 7.2 shows the results for the slow-stepping computation (Timely-BFS).
As expected, the overhead is generally much lower compared to the fast-
stepping computation in all tested configurations. Interestingly, the stan-
dard configuration seems to result in a lower overhead than the single-flush
or tracepoints-only configurations for this computation. The most likely ex-
planation to this is that, as mentioned above, in these configurations workers
generate vastly higher numbers of log events during spinning phases. Com-
pared to the fast-spinning computation however, the delay caused by a log
flush at each step has less impact on the total runtime because the computa-
tion is not stepped as often.

For suggestions on how to improve the instrumentation and Timely’s log-
ging facility, refer to Chapter 8.

7.2 Performance of the Critical Path Analysis

To test the performance of the critical path analysis itself, we used the same
two programs — the fast-stepping Differential-BFS and the slow-stepping
Timely-BFS — as reference computations. The analysis was configured such
that it splits the trace into 1-second slices and computes the critical path for
each slice.

We ran the Differential-BFS computation on 6 workers on a random graph
with 5 million nodes and 50 million edges to generate an execution trace. We
then measured the runtime of the critical path analysis in different worker
configurations. The whole experiment was repeated 10 times.

Figure 7.3 shows the resulting runtime on 1-6 workers. Error bars indicate
the sample standard deviation. Fig. 7.3a shows the analysis of traces which
were recorded using the standard logging infrastructure using regular disk
flushes, whereas Fig. 7.3b shows the analysis of traces which were kept in
memory and written to disk at the end of the computation. The red lines
show the mean runtimes of the reference computations.

The data in Fig. 7.3a shows that the critical path analysis is running faster
than the reference computation when using 6 workers. Thus, it is possible
to perform it in real-time.

The the lack of improvement on 4-5 workers compared to 3 workers can
be attributed to load imbalances occurring in these worker configurations.
Remember that most of the parallelization comes from the fact that it is
possible to process logs streams from different workers of the reference com-
putation in parallel. As there are 6 workers running the reference computa-
tion, it is possible to distribute the load evenly onto 1, 2, 3 or 6 workers as
these numbers are divisors of 6. As 4 and 5 are not divisors of 6, there is a
load imbalance in those configurations, which explains the lack of improve-

70

7.2. Performance of the Critical Path Analysis

 10

 12

 14

 16

 18

 20

 22

 24

1 2 3 4 5 6

R
u

n
ti
m

e
 [

s
]

Number of Workers

Critical Path Analysis
Reference Runtime

(a) Analysis of disk-recorded
traces.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

R
u

n
ti
m

e
 [

s
]

Number of Workers

Critical Path Analysis
Reference Runtime

(b) Analysis of memory-recorded
traces.

Figure 7.3: Critical path analysis runtime for Differential-BFS
traces. The red lines indicate the mean runtimes of the reference
computations, which used 6 workers.

ment compared to the 3-worker configuration. For maximum efficiency, it
is therefore advisable to always select the number of workers for the anal-
ysis computation to be a divisor of the number of workers in the reference
computation.

On the other hand, when keeping the logs in memory during the reference
computation to reduce overhead, the critical path analysis of the resulting
trace is much slower, as Fig. 7.3b shows. Table 7.1 shows the average num-
ber of activities in the generated (unprocessed) traces. Clearly, the increase
in runtime is caused by the much higher number of activities/log events

Activity Type
Avg. Count, Avg. Count,

Disk-recorded Trace Memory-recorded Trace
Active Operator 392,876 358,757

Inactive Operator 14,049,106 65,928,959
Message 166,613 166,613

Progress Message 842,286 834,730
Total 15,450,881 67,289,059

Table 7.1: Average number of activities before the wait-state anal-
ysis in the Differential-BFS traces.

71

7. Evaluation

generated when memory-based log recording is used. The higher number
of total events is caused solely by the increase in inactive operator activities.
As mentioned in Section 7.1, when the log event rate is not limited by disk
throughput, more such activities are generated during the spinning phases.
Note that the number of active operators and progress messages are even
lower than in the disk-recorded traces, while the number of messages stays
constant.

This result clearly indicates that reducing the number of inactive operator ac-
tivities would lead to a substantial performance improvement. Approaches
to do so are discussed in Chapter 8. Note also that the memory-based trac-
ing approach gives an upper bound on the number of log events generated if
the Timely’s logging facility was implemented more efficiently. Thus, if the
logging facility is to be optimized, reducing the number of inactive operator
events should also be given a high priority.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 2 3 4 5 6

S
p

e
e

d
u

p

Number of Workers

Disk-recorded Trace
Memory-recorded Trace

Figure 7.4: Critical path analysis speedup for Differential-BFS
traces.

Figure 7.4 shows the speedup for the analysis of both types of traces. Again,
the lack of improvement on 4-5 workers is due to the load imablance ex-
plained above.

Compared to the Differential-BFS implementation, the Timely-BFS imple-
mentation is considerably more efficient. Hence, we used larger graphs,
consisting of 20 million nodes and 200 million edges, as inputs for the fol-
lowing experiments. Also, the reference computation was run on 16 workers
instead of just 6.

72

7.2. Performance of the Critical Path Analysis

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 16

R
u

n
ti
m

e
 [

s
]

Number of Workers

Critical Path Analysis
Reference Runtime

(a) Analysis of disk-recorded
traces.

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16

R
u

n
ti
m

e
 [

s
]

Number of Workers

Critical Path Analysis
Reference Runtime

(b) Analysis of memory-recorded
traces.

Figure 7.5: Critical path analysis runtime for Timely-BFS traces.
The red lines indicate the mean runtimes of the reference com-
putations, which used 16 workers.

The results, shown in Fig. 7.5, follow a similar pattern. As the Timely-BFS
implementation is slow-spinning, it generates less log events. Thus, the
critical path analysis running on just two workers is already faster than
the reference computation on 16 workers. However, Fig. 7.5b shows that
just like for the Differential-BFS computation, the analysis of the memory-
recorded traces is much slower. Again, this is explained by the increased
number of log events which need to be processed, as shown in Table 7.2.
While in this case, the number of active operators and progress messages
increased as well, the absolute numbers are still very low. The increase

Activity Type
Avg. Count, Avg. Count,

Disk-recorded Trace Memory-recorded Trace
Active Operator 15,680 34,908

Inactive Operator 421,202 58,966,272
Message 587,689 587,689

Progress Message 232,205 540,018
Total 1,256,776 60,128,887

Table 7.2: Average number of activities before the wait-state anal-
ysis in the Timely-BFS traces.

73

7. Evaluation

in those activities is negligible compared to the almost 140-fold increase
in inactive operator activities, which is clearly the reason for the runtime
increase. Note that the high variance in the critical path analysis runtime is
explained by the high variance in the number of log events generated by the
Timely-BFS computation.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

1 2 4 8 16

S
p

e
e

d
u

p

Number of Workers

Disk-recorded Trace
Memory-recorded Trace

Figure 7.6: Critical path analysis speedup for Timely-BFS traces.

The speedup of the analysis is shown in Fig. 7.6. While the number of
events has a large impact on the runtime, it is clear from the speedup plot
that it does not affect the scalability, as the increased number of events are
still processed in parallel. Given the relatively low number of events in the
normal traces, the speedup decrease from 8 to 16 workers could be explained
by the comparatively high overhead introduced by the added workers. Also,
keep in mind that the machine on which these experiments were run has
4 octa-core processors. Hence, NUMA effects could play a role once more
than 8 threads (and thus at least two physical processors) are used. As the
analysis of the memory-recorded trace is dominated by the processing of
inactive operator events/activities, a task which requires no data exchange
between the workers, it is possible that it is less affected by such effects
compared to the analysis of the disk-recorded trace.

It is important to note that stages that are placed after the wait-state analysis
in the dataflow are largely unaffected by the increased number of inactive
operator activities, as most of those are replaced by waiting activities during
the wait-state analysis. This is of particular importance to the slicing stage,
as it is currently not parallelized.

74

7.3. Analyzing the Scalability of BFS

Note that for both the Differential-BFS and Timely-BFS computations, the
speedup is not ideal. The most likely bottleneck is the reading of the input
trace; as the traces are currently read from disk, the constant disk through-
put puts a limit on the scalability. Another potential bottleneck could be the
slicing stage.

7.3 Analyzing the Scalability of BFS

To evaluate the usefulness of critical path analysis for Timely Dataflow com-
putations, we performed an analysis of the Differential Dataflow-based BFS
computation to ascertain the factor(s) limiting its scalability.

For this purpose, we ran the BFS computation on a random graph with 10
million nodes and 100 million edges and computed the critical path over the
whole generated trace. The experiment was run in 2-, 4-, 8- and 16-worker
configurations, and for each configuration we performed 10 repetitions. The
instrumentation data was kept in memory during the BFS computation in
order to avoid the distortions introduced by regular log buffer flushes to
disk.

For each configuration, we computed the critical path profiles, i.e. the total
duration on the critical path for each activity type, averaged over the 10
repetitions. From these profiles, we then selected the top 5 contributors (for
each configuration individually), and aggregated all other activities into a
separate group (“other activities”).

The BFS implementation includes the generation of the random graph at
the beginning of the computation. Since this is done outside the scope of
any operator, we instrumented this part using application-defined activities.
Furthermore, instrumentation was also added to cover the most important
parts of Timely’s progress tracking logic. This was also done using applica-
tion activities 1.

7.3.1 Results and Discussion

The resulting mean critical path profiles can be seen in Fig. 7.7. We can see
immediately that the graph generation takes almost the same time in each
configuration, and does therefore not scale at all. This can be explained by
the fact that the whole graph is generated by worker zero alone at the begin-
ning of the computation. The other workers only absorb the generated edges
during that time, i.e. they are not performing a lot of work. Thus, the graph

1Even though the progress tracking logic is technically a part of the Timely system, it
can be instrumented using application-defined activities. This is a quick and simple way of
extending the existing instrumentation.

75

7. Evaluation

 0

 5

 10

 15

 20

 25

 30

2 4 8 16

D
u

ra
ti
o

n
 [

s
]

Number of Workers

Critical Path Profiles

Graph Generation
Progress Tracking
Operator [0, 4, 8] (GroupArranged)
Operator [0, 4, 7] (ArrangeByKey)
Operator [0, 4, 5] (Join)
Operator [0, 4, 4] (ArrangeByKey)
Other Activities
Unknown

Figure 7.7: Critical path profiles showing the top five contribu-
tors in each configuration. The smaller contributors are grouped
together in the “Other Activities” category. Note that the top
five contributors change for the different configurations.

generation is usually almost entirely part of the critical path in this compu-
tation. This can be seen in Fig. 6.4, which shows the same computation but
executed with a much smaller input graph size.

On the other hand, the plot shows that the critical path duration of the top
contributing operators decreases as the number of workers is increased. For
an operator/activity which scales perfectly, one would expect its duration
to be approximately halved each time the number of workers is doubled.
Clearly, the top contributing operators do scale, although not perfectly.

Apart from constant-duration graph generation, the limiting factor seems to
be the progress tracking logic. Starting at four workers, it already belongs
to the top five contributing activities. The duration progress tracking spent
on the critical path increases as the number of workers increases. From 8 to
16 workers, the duration almost doubles, and as a result the whole compu-
tation has a longer runtime when using 16 workers than when using only 8.
It is clear that progress tracking is the primary reason why the computation
does not scale well. Note that small parts of the progress tracking imple-
mentation are still uninstrumented, and therefore part of the “Unknown”

76

7.3. Analyzing the Scalability of BFS

category. This could be the reason why the duration of unknown activities
does also not decrease on 16 workers compared to 8.

7.3.2 Finding Activities to Optimize

 0

 20

 40

 60

 80

 100

2 4 8 16

%
 o

f
to

ta
l

Number of Workers

Critical Path Profiles

Graph Generation
Progress Tracking
Operator [0, 4, 8] (GroupArranged)
Operator [0, 4, 7] (ArrangeByKey)
Operator [0, 4, 5] (Join)
Operator [0, 4, 4] (ArrangeByKey)
Other Activities
Unknown

Figure 7.8: Critical path profiles showing the relative critical
path contribution of the top five activity types.

Figure 7.8 shows the relative critical path contributions of each activity type
instead of the absolute time. This plot is very useful to find activities to
optimize. Assuming that the progress tracking cannot be optimized, the
scalability is mostly limited by the graph generation. On 8 workers, it con-
tributes to more than a third of the whole critical path and is thus by far the
largest contributor. Hence, we can conclude that optimizing the graph gen-
eration by distributing it to multiple workers would substantially improve
the performance and scalability of the computation, and should be given a
high priority.

77

Chapter 8

Future Work

This chapter discusses areas on which future work efforts should be focused
in order to further improve or extend the results of this work. Section 8.1
discusses how our model could be applied to other data-parallel systems.
In Section 8.2, we provide suggestions for the extension of the performance
analysis to provide more useful information than just the critical path. Sec-
tion 8.3 discusses how a sampling method could be used to decrease the
workload and logging overhead. Sections 8.4 and 8.5 discuss improvements
to the instrumentation and the logging facility, respectively. In Section 8.6,
ways to improve the accuracy of the current wait-state analysis (which is
partially based on heuristics) are discussed. Finally, Section 8.7 discusses
how the interactive trace visualization tool could be improved in the future.

8.1 Applying the Formal Model to Other Systems

The formal model described in Chapter 3 is intended to be generally ap-
plicable to modern data-parallel systems (and potentially other distributed
systems). Therefore, a straightforward extension would be to instrument
other systems, such as Spark [40], Flink [1, 21] or Storm [2, 37] accordingly
and apply the methods discussed in this work to these systems.

Note that much of the actual performance analysis computation currently
expects a Timely-specific log format. Furthermore, the wait-state analysis
is specific to Timely Dataflow’s runtime behavior, although many of the
principles could also be applied to similar systems. Therefore, it would be
advisable to develop a more generalized intermediate log format to facilitate
an implementation for multiple systems. Moreover, a standardized interface
for the wait-state analysis should be developed, such that implementations
for different systems can be plugged in easily.

79

8. Future Work

Keep in mind however that using an intermediate format for the logs might
come with a performance penalty. However, this might be acceptable, espe-
cially if the real-time aspect of the analysis is not part of the use case.

8.2 Extending the Performance Analysis

As described in Chapter 6, the entire performance analysis is implemented
as a Timely Dataflow computation. This makes it very easy to extend by
adding additional downstream operators. Such operators could be used to
compute useful metrics based on the trace or critical path data. An exam-
ple of such a metric could be the slack of an activity, which is the time by
which the activity’s duration could be increased without it becoming part
of the critical path, i.e. without causing an increase in the overall runtime
of the computation. Another example would be the critical path imbalance
indicator, as defined by Böhme et. al. [13, 12], which is a measure of the
difference between an activity type’s contribution to the critical path and
the average time spent executing said activity type across all workers. Indu-
bitably, new useful metrics based on the complete critical path could also be
devised. These metrics could also be aggregated over multiple slices of the
computation.

Furthermore, if the real-time aspect is not important for a particular use case,
it might be beneficial to actually construct the proper activity graph. Doing
so could simplify the computation of additional metrics. Also, Differential
Dataflow’s [4] higher-level interface could be used to implement additional
analysis stages more quickly.

8.3 Applying a Sampling Method

To reduce the workload, a sampling method could be applied. Instead of
computing the critical path for consecutive slices of the computation, one
could sample a smaller number of slices, compute the critical path for those
samples, and then aggregate the results.

In order to do so, the performance analysis could ditch a certain amount
of the trace in the early stages. An even better solution would be if the
instrumentation could be enabled/disabled during runtime, as this would
also remove the overhead of logging from the reference computation while
no sample is taken.

One difficulty would be to select the start- and end points of a sample, such
that aggregate measures over multiple samples are meaningful. Ideally, the
sample outline should be defined by the reference computation itself. This
would make it possible to perform a critical path analysis of just the process-

80

8.4. Instrumentation Improvements

ing of individual queries submitted to a running computation, which would
be useful to optimize query response time.

As an example in the context of Internet services, the Mystery Machine
[17] is able to perform such an end-to-end query analysis and produces
aggregated results over a large number of sampled traces.

8.4 Instrumentation Improvements

The most obvious instrumentation improvement is to add more of it. Cur-
rently, the default instrumentation is relatively coarse-grained. In the fu-
ture, instrumentation could be added to cover all the activity types listed
in Section 3.2. For example, neither buffer management nor serialization is
currently covered with dedicated instrumentation.

8.4.1 Recording OS Scheduling Information

The current performance analysis does not receive any information about
when a worker thread of the reference computation was preempted by the
operating system’s scheduler. If the instrumentation would include the trac-
ing of OS scheduler events, the idle activity type (see Section 3.2) could be
included in the analysis. Idle activities would not only improve the accu-
racy of the analysis, they could also enable the spotting of certain configura-
tion problems. For example, if the computation is run with more (worker-)
threads than CPU cores available on the machine, this could lead to massive
latency issues. As a large percentage of the critical path would consist of
idle activities, such problems could easily by spotted during the analysis.
The tracing of the scheduler could be implemented on Linux using a tracing
framework such as DTrace [15] or LTTng [18].

8.4.2 Reducing the Number of Schedule Events

As mentioned in Section 4.2, currently ScheduleEvents are recorded both
for operators which performed useful work as well as for those which did
not. As a consequence, a large amount of schedule events are recorded
for operators which were running only briefly to poll their queues. These
log events (as well as the resulting program activities) convey little useful
information. If one excludes all such activities which will be replaced by
waiting states, these inactive operator activities make up only a very small
percentage of the overall runtime for computations with realistic input data
sizes, as operators which are performing useful work run for an much longer
time in comparison.

81

8. Future Work

However, recording all schedule events adds a significant overhead, espe-
cially considering that they are also recorded when the worker is in a waiting
phase, i.e. when it is spinning. During the spinning phases, such log events
are produced at a much higher rate than during normal execution, but all
of these events are later discarded by the wait-state analysis. Especially if
multiple workers are spinning simultaneously, the recording of these events
puts an enormous pressure on the disk. The resulting overhead in both the
reference computation as well as the performance analysis is demonstrated
by the experiments described in Section 7.1 and Section 7.2. It is therefore
clear that reducing the number of schedule events for inactive operators has
the potential to massively improve the performance of the analysis and to re-
duce the overhead of the event logging in the reference computation. Hence
it should be given a high priority for future work.

One proposed solution would be to implement a dynamic scheduler for
Timely, as described in Section 8.6.1. Operators which would not perform
any work would then not be scheduled in the first place, hence eliminating
all inactive operator schedule events. Alternatively, Timely’s logging facility
could filter out the needless events from the log buffers before flushing them.
While this would add some computational cost, it would help to significantly
reduce disk pressure.

Consider that the wait-state analysis in its current form makes use of inac-
tive operator activities as it needs to keep executions of all operators, active
or inactive, in its sliding window. However, for this purpose, the inactive op-
erator activities are not essential. An alternative solution would be to record
a single log event at each step of the computation, and use that event as a
reference to define the boundaries of the sliding window.

8.4.3 Removing Sequence Numbers from Messages

Currently, both data- and progress messages contain sequence numbers.
These sequence numbers are needed to correlate progress- or message events
from the event logs. Each message sent over a communication channel, i.e.
over a TCP connection, contains an additional sequence number. Since these
channels are all ordered, a minor improvement to reduce network overhead
would be to not include the sequence numbers in the message itself, but
rather maintain them on both endpoints using simple counters.

8.4.4 Dynamic Instrumentation

When one is only interested in analyzing specific parts of the computation,
switching to a more flexible dynamic instrumentation method would be
beneficial in the future. Dynamic instrumentation would also facilitate the
temporary insertion of more fine-grained tracepoints for certain parts of the

82

8.5. Logging Facility Improvements

program while searching for the precise root cause of a performance issue.
These are some of the benefits a modern dynamic tracing framework, such
as Pivot Tracing [27], Fay [20] or DTrace [15], would offer over the current,
static instrumentation. The current solution also has the drawback of not
being able to record any system calls. Thus, I/O activities are currently not
registered. By inserting tracepoints at read/write system calls for example,
such activities could be detected. This kind of tracing could easily be imple-
mented using already existing tracing frameworks like the ones mentioned
above.

An interesting further possibility would be to develop a cost model that can
be used to adaptively enable/disable tracepoints in a dynamic fashion, such
that both the instrumentation overhead as well as the performance of the
critical path analysis is kept within acceptable (user-defined) bounds. The
cost model could be based on measurements of the log event rate (which
may vary over time), the memory- and disk bandwidth, and potentially
other factors.

8.5 Logging Facility Improvements

Assuming the logging facility used to record all trace events is not replaced
by an external, dynamic instrumentation framework in the future, it could
be improved in several ways. Currently, it is tightly integrated with Timely,
which makes it difficult to add instrumentation to libraries which do not
depend on the Timely library (called a “crate” in Rust [5]). In the future,
it would be beneficial to create a dedicated logging library, which could
then be used by both Timely as well as other components. An example of
such a component would be Timely’s communication library, which already
required a separate logging facility to allow communication events to be
recorded, or the serialization library which is currently uninstrumented.

Moreover, the logging facility currently flushes the events from all the log
buffers to disk at every step of the computation. This is done synchronously,
which means the computation is delayed until the data is written to disk.
Also, the instrumentation of Timely’s communication library flushes events
to disk immediately. Ideally, any I/O operations should be taken off the criti-
cal path, such that they have no effect on the total runtime of the computation.
This could be achieved in different ways. For example, an asynchronous I/O
API could be used, such that the write calls would not block, and therefore
not delay the computation as much. A different solution would be to store
the events in a ring buffer and hand over the responsibility of writing the
events to disk to a separate I/O thread. Logging calls would only block
in case the buffer is full. To avoid lock contention, one could use separate
buffers for all worker threads.

83

8. Future Work

8.5.1 Integrating Clock Alignment

The logging facility itself should take periodic measurements of clock skew/-
drift, preferably during a time in which the network is idle. It could then
use the measurements to align the clocks on different machines, and hence
produce event timestamps which do not need to be corrected by the per-
formance analysis anymore. The increased accuracy provided by periodic
measurements would make it possible to more precisely measure the dura-
tion of communication activities. See also Section 4.3.1 for more information
about clock alignment.

8.6 Improving the Accuracy of the Wait-State Analysis

The wait-state analysis currently relies on a number of heuristics and as-
sumptions. Although reasonable, these cannot always be correct. The follow-
ing sections describe ways in which the accuracy of the wait-state analysis
could be improved.

8.6.1 Replacing Timely’s Static Scheduler

Instead of Timely’s current static scheduling method, a dynamic scheduler
could be implemented which would be aware of any outstanding work an
operator has (e.g. by keeping track of input queue sizes and outstanding
progress information). In this case, the scheduler itself would already know
when a worker is in a waiting state, and would not need to spin the oper-
ators. Using appropriate instrumentation, the start- and end timestamps of
waiting states could be captured directly, eliminating the need for a sophis-
ticated trace-based wait-state analysis.

On the other hand, a proper dynamic scheduler adds a lot of complexity in
comparison to Timely’s current scheduling logic, and it is unclear if typical
Timely computations themselves would even benefit from this approach.

8.6.2 Programming Model Modifications

In order to remove some of the uncertainty when determining causal rela-
tionships between events, Timely’s programming model could be extended
slightly. For example, an operator’s logic could be split into separate call-
backs for message- and progress notification processing. This would allow
one to more accurately determine the causes of an operator’s activity. Fur-
thermore, special markers could be applied to operators which are allowed
to read input from an external system, to allow one to more accurately de-
termine whether an operator read external input or reacted to an earlier
progress update.

84

8.7. Improving the Visualization

However, any such extensions are also restrictions of Timely’s very general
and flexible programming model. Thus, one has to weigh that generality
against the improved accuracy of the performance analysis.

8.6.3 More Precise Modeling of Progress Tracking

Finally, an improvement which does not require a modification of Timely’s
current behavior would be to more accurately model Timely’s progress track-
ing. For this purpose, the contents of progress messages, i.e. each contained
progress update, need to be logged. Then, the whole progress tracking
protocol could be re-played by the analysis. Knowledge of the contents of
progress updates as well as the behavior of the progress tracking logic would
allow one to draw more accurate conclusions about the causal relationships
between new progress messages, the progress updates which are pushed
onto operators, and operator activity.

For example, a PushProgress event could be caused by a newly read
progress message or by progress updates which were pushed onto the sub-
graph by an outer subgraph, or both. Re-playing the progress tracking pro-
tocol would reveal the exact cause(s).

If this approach is pursued in the future, it would be advisable to extract
Timely’s current implementation of the progress tracking protocol and move
it to a dedicated library, which could then be loaded by both Timely as well
as the performance analysis computation.

8.7 Improving the Visualization

The visualization tool described in Section 6.2 could be improved to display
more information. For example, it could include the critical path profiles. A
server-based component could also help to provide useful functionality such
as computing aggregates over the trace/critical path data of multiple slices,
management of stored traces and more. Furthermore, for large traces, the
performance of the visualization could be improved by not loading the en-
tire trace, but instead loading only the parts which are visible to the user (the
view would need to be zoomed in to a level with acceptable performance
by default). If the user scrolls to either side, the relevant parts of the trace
could be loaded into memory on the fly (with some caching/pre-loading of
adjacent sections).

85

Chapter 9

Conclusion

In this work, we have successfully applied critical path analysis to Timely
Dataflow, a modern, distributed, data-parallel stream processing engine. We
have shown that our refined performance model offers viable methods to
find the causes of performance bottlenecks in computations. The trace-based
approach only requires a small amount of instrumentation in the target sys-
tem and the analysis can be performed efficiently. We have formalized our
methodology such that it can be applied to other data-parallel systems.

Moreover, we have introduced an algorithm to identify waiting phases in a
worker thread’s execution based solely on the execution traces produced by
the instrumentation. While this algorithm is specific to Timely Dataflow’s
runtime behavior, we believe that it is possible to adapt it to other, compara-
ble systems.

We have further shown that it is possible to perform the entire performance
analysis, including the identification of waiting phases and the critical path
algorithm, as a data-parallel computation itself by implementing it using
Timely Dataflow. Our prototype system is capable of performing critical
path analysis efficiently and in a scalable manner. We have demonstrated
that the entire analysis can even be performed in real-time or close to real-
time in many configurations.

Thus, we offer both the methods as well as a system to identify application-
or system components that limit the performance and scalability of data-
parallel computations in real-time.

87

Bibliography

[1] Apache Flink: Scalable batch and stream data processing. https:
//flink.apache.org/. Retrieved: August 2016.

[2] Apache Storm. http://storm.apache.org/. Retrieved: August
2016.

[3] Data-Driven Documents. https://d3js.org/. Retrieved: August
2016.

[4] Differential Dataflow. https://github.com/frankmcsherry/
differential-dataflow. Retrieved: August 2016.

[5] The Rust programming language. https://www.rust-lang.org/.
Retrieved: August 2016.

[6] Timely Dataflow. https://github.com/frankmcsherry/
timely-dataflow. Retrieved: August 2016.

[7] IEEE standard for a precision clock synchronization protocol for net-
worked measurement and control systems. IEEE Std 1588-2008 (Revision
of IEEE Std 1588-2002), pages 1–269, July 2008.

[8] Martı́n Abadi, Frank McSherry, and Gordon D Plotkin. Foundations of
differential dataflow. In International Conference on Foundations of Soft-
ware Science and Computation Structures, pages 71–83, 2015.

[9] Cedell Alexander, Donna Reese, and James C. Harden. Near-critical
path analysis of program activity graphs. In International Workshop on
Modeling, Analysis, and Simulation On Computer and Telecommunication
Systems, 1994.

89

https://flink.apache.org/
https://flink.apache.org/
http://storm.apache.org/
https://d3js.org/
https://github.com/frankmcsherry/differential-dataflow
https://github.com/frankmcsherry/differential-dataflow
https://www.rust-lang.org/
https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/timely-dataflow

Bibliography

[10] Cedell A. Alexander, Donna S. Reese, James C. Harden, and Ron B.
Brightwell. Near-critical path analysis: A tool for parallel program
optimization. In Southern Symposium on Computing, 1998.

[11] Paul Barford and Mark Crovella. Critical path analysis of TCP transac-
tions. In Proceedings of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, SIGCOMM ’00, pages
127–138, 2000.

[12] David Böhme. Characterizing Load and Communication Imbalance in Paral-
lel Applications. PhD thesis, Aachen University, Germany, June 2013.

[13] David Böhme, Bronis R. de Supinski, Markus Geimer, Martin Schulz,
and Felix Wolf. Scalable critical-path based performance analysis. In
IEEE International Parallel and Distributed Processing Symposium, 2012.

[14] Magnus Broberg, Lars Lundberg, and Håkan Grahn. Performance op-
timization using extended critical path analysis in multithreaded pro-
grams on multiprocessors. Journal of Parallel and Distributed Computing,
61(1):115–136, 2001.

[15] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dy-
namic instrumentation of production systems. In USENIX Annual Tech-
nical Conference, 2004.

[16] Jian Chen and Russell M. Clapp. Critical-path candidates: scalable per-
formance modeling for MPI workloads. In IEEE International Symposium
on Performance Analysis of Systems and Software, 2015.

[17] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.
Wenisch. The Mystery Machine: End-to-end performance analysis of
large-scale internet services. In OSDI, 2014.

[18] Mathieu Desnoyers and Michel R Dagenais. The LTTng tracer: A low
impact performance and behavior monitor for GNU/Linux. In Proceed-
ings of the Ottawa Linux Symposium, 2006.

[19] Isaac Dooley and Laxmikant V. Kalé. Detecting and using critical paths
at runtime in message driven parallel programs. In IEEE International
Symposium on Parallel and Distributed Processing, 2010.

[20] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai Budiu, and Glo-
ria Mainar-Ruiz. Fay: Extensible distributed tracing from kernels to
clusters. ACM Transactions on Computer Systems, 30(4):13:1–13:35, 2012.

90

Bibliography

[21] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl.
Spinning fast iterative data flows. Proceedings of the VLDB Endowment,
5(11):1268–1279, July 2012.

[22] Brian Fields, Shai Rubin, and Rastislav Bodı́k. Focusing processor poli-
cies via critical-path prediction. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’01, pages 74–85, 2001.

[23] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
ACTOR formalism for artificial intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI’73, pages 235–
245, 1973.

[24] Jeffrey K. Hollingsworth. An online computation of critical path profil-
ing. In SIGMETRICS Symposium on Parallel and Distributed Tools, 1996.

[25] Jeffrey K. Hollingsworth. Critical path profiling of message passing and
shared-memory programs. IEEE Transactions on Parallel and Distributed
Systems, 9(10):1029–1040, 1998.

[26] James E. Kelley, Jr and Morgan R. Walker. Critical-path planning and
scheduling. In Eastern Joint IRE-AIEE-ACM Computer Conference, 1959.

[27] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot Tracing: Dy-
namic causal monitoring for distributed systems. In Symposium on Op-
erating Systems Principles, 2015.

[28] Frank McSherry. Tracking progress in timely dataflow.
https://github.com/frankmcsherry/blog/blob/master/
posts/2015-12-19.md. Retrieved: August 2016.

[29] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard.
Differential dataflow. In Proceedings of the 6th Conference on Innovative
Data Systems Research, CIDR, January 2013.

[30] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead,
Sek-See Lim, and Timothy Torzewski. IPS-2: the second generation of
a parallel program measurement system. IEEE Transactions on Parallel
and Distributed Systems, 1(2):206–217, Apr 1990.

[31] Kristi Morton, Magdalena Balazinska, and Dan Grossman. ParaTimer:
A progress indicator for MapReduce DAGs. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD
’10, pages 507–518. ACM, 2010.

91

https://github.com/frankmcsherry/blog/blob/master/posts/2015-12-19.md
https://github.com/frankmcsherry/blog/blob/master/posts/2015-12-19.md

Bibliography

[32] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martı́n Abadi. Naiad: A timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 439–455, 2013.

[33] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and
Byung-Gon Chun. Making sense of performance in data analytics
frameworks. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI’15, pages 293–307. USENIX
Association, 2015.

[34] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Online com-
putation of critical paths for multithreaded languages. In IPDPS Work-
shops on Parallel and Distributed Processing, 2000.

[35] Ali G. Saidi, Nathan L. Binkert, Steven K. Reinhardt, and Trevor N.
Mudge. Full-system critical path analysis. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software, 2008.

[36] M. Schulz. Extracting critical path graphs from MPI applications. IEEE
International Conference on Cluster Computing, 2005.

[37] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14, pages 147–156,
New York, NY, USA, 2014. ACM.

[38] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea, and Seth C. Gold-
stein. Global critical path: A tool for system-level timing analysis. In
DAC, 2007.

[39] Cui-Qing Yang and Barton P. Miller. Critical path analysis for the exe-
cution of parallel and distributed programs. In IEEE International Con-
ference on Distributed Computing Systems, 1988.

[40] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient Distributed Datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’12, pages
2–2. USENIX Association, 2012.

92

	Introduction
	Background
	Computational Model of Timely Dataflow / Naiad
	The Timely Dataflow System
	Scopes/Subgraphs

	Related Work

	Formal Performance Model
	Basic Performance Model
	Types of Activities
	Communication Activities
	Worker Activities

	Implications for Instrumentation
	Critical Path Algorithm

	Critical Path Computation: Preliminaries
	Timely Dataflow's Runtime Behavior
	Operator Scheduling
	Progress Tracking
	Communication between Workers

	Instrumentation
	Logging Facility
	Recorded Trace Events

	Trace Preprocessing
	Correcting Clock Skew
	Constructing Program Activities

	Critical Path Computation: Essentials
	Identifying Waiting Phases
	Assumptions about Operators
	Causal Relationships between Events/Activities
	Wait-State Analysis Algorithm

	Activity Graph
	Trace Slicing

	Critical Path Computation
	Preference for Worker Activities

	Implementation
	Stages of the Critical Path Analysis
	Visualization

	Evaluation
	Overhead of Instrumentation
	Results and Discussion

	Performance of the Critical Path Analysis
	Analyzing the Scalability of BFS
	Results and Discussion
	Finding Activities to Optimize

	Future Work
	Applying the Formal Model to Other Systems
	Extending the Performance Analysis
	Applying a Sampling Method
	Instrumentation Improvements
	Recording OS Scheduling Information
	Reducing the Number of Schedule Events
	Removing Sequence Numbers from Messages
	Dynamic Instrumentation

	Logging Facility Improvements
	Integrating Clock Alignment

	Improving the Accuracy of the Wait-State Analysis
	Replacing Timely's Static Scheduler
	Programming Model Modifications
	More Precise Modeling of Progress Tracking

	Improving the Visualization

	Conclusion
	Bibliography

