1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! Types to build operators with general shapes.
//!
//! These types expose some raw timely interfaces, and while public so that others can build on them,
//! they require some sophistication to use correctly. I recommend checking out `builder_rc.rs` for 
//! an interface that is intentionally harder to mis-use.

use std::default::Default;

use ::Data;

use progress::nested::subgraph::{Source, Target};
use progress::ChangeBatch;
use progress::{Timestamp, Operate, Antichain};

use dataflow::{Stream, Scope};
use dataflow::channels::pushers::Tee;
use dataflow::channels::pact::ParallelizationContract;

/// Contains type-free information about the operator properties.
pub struct OperatorShape {
    name: String,   // A meaningful name for the operator.
    notify: bool,   // Does the operator require progress notifications.
    peers: usize,   // The total number of workers in the computation.
    inputs: usize,  // The number of input ports.
    outputs: usize, // The number of output ports.
}

/// Core data for the structure of an operator, minus scope and logic.
impl OperatorShape {
    fn new(name: String, peers: usize) -> Self {
        OperatorShape {
            name: name,
            notify: true,
            peers: peers,
            inputs: 0,
            outputs: 0,
        }
    }

    /// The number of inputs of this operator
    pub fn inputs(&self) -> usize {
        self.inputs
    }

    /// The number of outputs of this operator
    pub fn outputs(&self) -> usize {
        self.outputs
    }
}

/// Builds operators with generic shape.
pub struct OperatorBuilder<G: Scope> {
    scope: G,
    index: usize,
    shape: OperatorShape,
    summary: Vec<Vec<Antichain<<G::Timestamp as Timestamp>::Summary>>>,
}

impl<G: Scope> OperatorBuilder<G> {

    /// Allocates a new generic operator builder from its containing scope.
    pub fn new(name: String, mut scope: G) -> Self {

        let index = scope.allocate_operator_index();
        let peers = scope.peers();

        OperatorBuilder {
            scope: scope,
            index: index,
            shape: OperatorShape::new(name, peers),
            summary: vec![],
        }
    }

    /// The operator's index
    pub fn index(&self) -> usize {
        self.index
    }

    /// Return a reference to the operator's shape
    pub fn shape(&self) -> &OperatorShape {
        &self.shape
    }

    /// Indicates whether the operator requires frontier information.
    pub fn set_notify(&mut self, notify: bool) {
        self.shape.notify = notify;
    }

    /// Adds a new input to a generic operator builder, returning the `Pull` implementor to use.
    pub fn new_input<D: Data, P>(&mut self, stream: &Stream<G, D>, pact: P) -> P::Puller
        where
            P: ParallelizationContract<G::Timestamp, D> {
        let connection = vec![Antichain::from_elem(Default::default()); self.shape.outputs];
        self.new_input_connection(stream, pact, connection)
    }

    /// Adds a new input to a generic operator builder, returning the `Pull` implementor to use.
    pub fn new_input_connection<D: Data, P>(&mut self, stream: &Stream<G, D>, pact: P, connection: Vec<Antichain<<G::Timestamp as Timestamp>::Summary>>) -> P::Puller
    where
        P: ParallelizationContract<G::Timestamp, D> {

        let channel_id = self.scope.new_identifier();
        let logging = self.scope.logging();
        let (sender, receiver) = pact.connect(&mut self.scope, channel_id, logging);
        let target = Target { index: self.index, port: self.shape.inputs };
        stream.connect_to(target, sender, channel_id);
        
        self.shape.inputs += 1;
        assert_eq!(self.shape.outputs, connection.len());
        self.summary.push(connection);

        receiver
    }

    /// Adds a new input to a generic operator builder, returning the `Push` implementor to use.
    pub fn new_output<D: Data>(&mut self) -> (Tee<G::Timestamp, D>, Stream<G, D>) {

        let connection = vec![Antichain::from_elem(Default::default()); self.shape.inputs];
        self.new_output_connection(connection)
    }

    /// Adds a new input to a generic operator builder, returning the `Push` implementor to use.
    pub fn new_output_connection<D: Data>(&mut self, connection: Vec<Antichain<<G::Timestamp as Timestamp>::Summary>>) -> (Tee<G::Timestamp, D>, Stream<G, D>) {

        let (targets, registrar) = Tee::<G::Timestamp,D>::new();
        let source = Source { index: self.index, port: self.shape.outputs };
        let stream = Stream::new(source, registrar, self.scope.clone());

        self.shape.outputs += 1;
        assert_eq!(self.shape.inputs, connection.len());
        for (summary, entry) in self.summary.iter_mut().zip(connection.into_iter()) {
            summary.push(entry);
        }

        (targets, stream)
    }

    /// Creates an operator implementation from supplied logic constructor.
    pub fn build<PEP, PIP>(mut self, push_external: PEP, pull_internal: PIP) 
    where 
        PEP: FnMut(&mut [ChangeBatch<G::Timestamp>])+'static,
        PIP: FnMut(
            &mut [ChangeBatch<G::Timestamp>],
            &mut [ChangeBatch<G::Timestamp>],
            &mut [ChangeBatch<G::Timestamp>],
        )->bool+'static
    {
        let operator = OperatorCore {
            shape: self.shape,
            push_external: push_external,
            pull_internal: pull_internal,
            summary: self.summary,
            phantom: ::std::marker::PhantomData,
        };

        self.scope.add_operator_with_index(operator, self.index);
    }
}

struct OperatorCore<T, PEP, PIP> 
    where 
        T: Timestamp,
        PEP: FnMut(&mut [ChangeBatch<T>])+'static,
        PIP: FnMut(&mut [ChangeBatch<T>], &mut [ChangeBatch<T>], &mut [ChangeBatch<T>])->bool+'static
{
    shape: OperatorShape,
    push_external: PEP,
    pull_internal: PIP,
    summary: Vec<Vec<Antichain<T::Summary>>>,
    phantom: ::std::marker::PhantomData<T>,
}

impl<T, PEP, PIP> Operate<T> for OperatorCore<T, PEP, PIP> 
    where 
        T: Timestamp,
        PEP: FnMut(&mut [ChangeBatch<T>])+'static,
        PIP: FnMut(&mut [ChangeBatch<T>], &mut [ChangeBatch<T>], &mut [ChangeBatch<T>])->bool+'static
{
    fn inputs(&self) -> usize { self.shape.inputs }
    fn outputs(&self) -> usize { self.shape.outputs }

    // announce internal topology as fully connected, and hold all default capabilities.
    fn get_internal_summary(&mut self) -> (Vec<Vec<Antichain<T::Summary>>>, Vec<ChangeBatch<T>>) {

        // by default, we reserve a capability for each output port at `Default::default()`.
        let mut internal = Vec::new();
        for _ in 0 .. self.shape.outputs {
            internal.push(ChangeBatch::new_from(Default::default(), self.shape.peers as i64));
        }

        (self.summary.clone(), internal)
    }

    // initialize self.frontier antichains as indicated by hosting scope.
    fn set_external_summary(&mut self, _summaries: Vec<Vec<Antichain<T::Summary>>>,
                                       count_map: &mut [ChangeBatch<T>]) {
        (self.push_external)(count_map);
    }

    // update self.frontier antichains as indicated by hosting scope.
    fn push_external_progress(&mut self, count_map: &mut [ChangeBatch<T>]) {
        (self.push_external)(count_map);
    }

    // invoke user logic, propagate changes found in shared ChangeBatches.
    fn pull_internal_progress(&mut self, consumed: &mut [ChangeBatch<T>],
                                         internal: &mut [ChangeBatch<T>],
                                         produced: &mut [ChangeBatch<T>]) -> bool
    {
        (self.pull_internal)(consumed, internal, produced)
    }

    fn name(&self) -> String { self.shape.name.clone() }
    fn notify_me(&self) -> bool { self.shape.notify }
}