1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use std::sync::mpsc::{Sender, Receiver, channel};
use std::sync::Arc;

use {Allocate, Data, Push, Pull, Serialize};
use allocator::Process;
use networking::MessageHeader;

// A communicator intended for binary channels (networking, pipes, shared memory)
pub struct Binary {
    pub inner:      Process,    // inner Process (use for process-local channels)
    pub index:      usize,      // index of this worker
    pub peers:      usize,      // number of peer workers
    pub allocated:  usize,      // indicates how many channels have been allocated (locally).

    // for loading up state in the networking threads.
    pub readers:    Vec<Sender<((usize, usize), Sender<Vec<u8>>)>>,
    pub senders:    Vec<Sender<(MessageHeader, Vec<u8>)>>,
    pub log_sender: Arc<Fn(::logging::CommsSetup)->::logging::CommsLogger+Send+Sync>,
}

impl Binary {
    pub fn inner<'a>(&'a mut self) -> &'a mut Process { &mut self.inner }
}

// A Communicator backed by Sender<Vec<u8>>/Receiver<Vec<u8>> pairs (e.g. networking, shared memory, files, pipes)
impl Allocate for Binary {
    fn index(&self) -> usize { self.index }
    fn peers(&self) -> usize { self.peers }
    fn allocate<T:Data>(&mut self) -> (Vec<Box<Push<T>>>, Box<Pull<T>>, Option<usize>) {
        let mut pushers: Vec<Box<Push<T>>> = Vec::new();

        // we'll need process-local channels as well (no self-loop binary connection in this design; perhaps should allow)
        let inner_peers = self.inner.peers();
        let (inner_sends, inner_recv, _) = self.inner.allocate();

        // prep a pushable for each endpoint, multiplied by inner_peers
        for index in 0..self.readers.len() {
            for counter in 0..inner_peers {
                let mut target_index = index * inner_peers + counter;

                // we may need to increment target_index by inner_peers;
                if index >= self.index / inner_peers { target_index += inner_peers; }

                let header = MessageHeader {
                    channel:    self.allocated,
                    source:     self.index,
                    target:     target_index,
                    length:     0,
                    seqno:      0,
                };
                let logger = (self.log_sender)(::logging::CommsSetup {
                    process: self.index,
                    sender: true,
                    remote: Some(target_index),
                });
                pushers.push(Box::new(Pusher::new(header, self.senders[index].clone(), logger)));
            }
        }

        // splice inner_sends into the vector of pushables
        for (index, writer) in inner_sends.into_iter().enumerate() {
            pushers.insert(((self.index / inner_peers) * inner_peers) + index, writer);
        }

        // prep a Box<Pullable<T>> using inner_recv and fresh registered pullables
        let (send,recv) = channel();    // binary channel from binary listener to BinaryPullable<T>
        for reader in self.readers.iter() {
            reader.send(((self.index, self.allocated), send.clone())).unwrap();
        }

        let logger = (self.log_sender)(::logging::CommsSetup {
            process: self.index,
            sender: false,
            remote: None,
        });
        let pullable = Box::new(Puller::new(inner_recv, recv, logger));

        self.allocated += 1;

        return (pushers, pullable, Some(self.allocated - 1));
    }
}

struct Pusher<T> {
    header:     MessageHeader,
    sender:     Sender<(MessageHeader, Vec<u8>)>,   // targets for each remote destination
    phantom:    ::std::marker::PhantomData<T>,
    log_sender: ::logging::CommsLogger,
}

impl<T> Pusher<T> {
    pub fn new(header: MessageHeader, sender: Sender<(MessageHeader, Vec<u8>)>, log_sender: ::logging::CommsLogger) -> Pusher<T> {
        Pusher {
            header:     header,
            sender:     sender,
            phantom:    ::std::marker::PhantomData,
            log_sender: log_sender,
        }
    }
}

impl<T:Data> Push<T> for Pusher<T> {
    #[inline] fn push(&mut self, element: &mut Option<T>) {
        if let Some(ref mut element) = *element {
            self.log_sender.when_enabled(|l| l.log(::logging::CommsEvent::Serialization(::logging::SerializationEvent {
                    seq_no: Some(self.header.seqno),
                    is_start: true,
                })));
            let mut bytes = Vec::new();
            <T as Serialize>::into_bytes(element, &mut bytes);
            let mut header = self.header;
            header.length = bytes.len();
            self.sender.send((header, bytes)).ok();     // TODO : should be unwrap()?
            self.log_sender.when_enabled(|l| l.log(::logging::CommsEvent::Serialization(::logging::SerializationEvent {
                    seq_no: Some(self.header.seqno),
                    is_start: true,
                })));
            self.header.seqno += 1;
        }
    }
}

struct Puller<T> {
    inner: Box<Pull<T>>,            // inner pullable (e.g. intra-process typed queue)
    current: Option<T>,
    receiver: Receiver<Vec<u8>>,    // source of serialized buffers
    log_sender: ::logging::CommsLogger,
}
impl<T:Data> Puller<T> {
    fn new(inner: Box<Pull<T>>, receiver: Receiver<Vec<u8>>, log_sender: ::logging::CommsLogger) -> Puller<T> {
        Puller { inner: inner, receiver: receiver, current: None, log_sender: log_sender }
    }
}

impl<T:Data> Pull<T> for Puller<T> {
    #[inline]
    fn pull(&mut self) -> &mut Option<T> {
        let inner = self.inner.pull();
        let log_sender = &self.log_sender;
        if inner.is_some() { inner }
        else {
            self.current = self.receiver.try_recv().ok().map(|mut bytes| {
                log_sender.when_enabled(|l| l.log(
                    ::logging::CommsEvent::Serialization(::logging::SerializationEvent {
                        seq_no: None,
                        is_start: true,
                    })));
                let result = <T as Serialize>::from_bytes(&mut bytes);
                log_sender.when_enabled(|l| l.log(
                    ::logging::CommsEvent::Serialization(::logging::SerializationEvent {
                        seq_no: None,
                        is_start: false,
                    })));
                result
            });
            &mut self.current
        }
    }
}